Metamath Proof Explorer


Theorem dfatprc

Description: A function is not defined at a proper class. (Contributed by AV, 1-Sep-2022)

Ref Expression
Assertion dfatprc ¬ A V ¬ F defAt A

Proof

Step Hyp Ref Expression
1 prcnel ¬ A V ¬ A dom F
2 1 orcd ¬ A V ¬ A dom F ¬ Fun F A
3 ianor ¬ A dom F Fun F A ¬ A dom F ¬ Fun F A
4 df-dfat F defAt A A dom F Fun F A
5 3 4 xchnxbir ¬ F defAt A ¬ A dom F ¬ Fun F A
6 2 5 sylibr ¬ A V ¬ F defAt A