Metamath Proof Explorer


Theorem dfatprc

Description: A function is not defined at a proper class. (Contributed by AV, 1-Sep-2022)

Ref Expression
Assertion dfatprc ( ¬ 𝐴 ∈ V → ¬ 𝐹 defAt 𝐴 )

Proof

Step Hyp Ref Expression
1 prcnel ( ¬ 𝐴 ∈ V → ¬ 𝐴 ∈ dom 𝐹 )
2 1 orcd ( ¬ 𝐴 ∈ V → ( ¬ 𝐴 ∈ dom 𝐹 ∨ ¬ Fun ( 𝐹 ↾ { 𝐴 } ) ) )
3 ianor ( ¬ ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) ↔ ( ¬ 𝐴 ∈ dom 𝐹 ∨ ¬ Fun ( 𝐹 ↾ { 𝐴 } ) ) )
4 df-dfat ( 𝐹 defAt 𝐴 ↔ ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) )
5 3 4 xchnxbir ( ¬ 𝐹 defAt 𝐴 ↔ ( ¬ 𝐴 ∈ dom 𝐹 ∨ ¬ Fun ( 𝐹 ↾ { 𝐴 } ) ) )
6 2 5 sylibr ( ¬ 𝐴 ∈ V → ¬ 𝐹 defAt 𝐴 )