Metamath Proof Explorer


Theorem dfatprc

Description: A function is not defined at a proper class. (Contributed by AV, 1-Sep-2022)

Ref Expression
Assertion dfatprc
|- ( -. A e. _V -> -. F defAt A )

Proof

Step Hyp Ref Expression
1 prcnel
 |-  ( -. A e. _V -> -. A e. dom F )
2 1 orcd
 |-  ( -. A e. _V -> ( -. A e. dom F \/ -. Fun ( F |` { A } ) ) )
3 ianor
 |-  ( -. ( A e. dom F /\ Fun ( F |` { A } ) ) <-> ( -. A e. dom F \/ -. Fun ( F |` { A } ) ) )
4 df-dfat
 |-  ( F defAt A <-> ( A e. dom F /\ Fun ( F |` { A } ) ) )
5 3 4 xchnxbir
 |-  ( -. F defAt A <-> ( -. A e. dom F \/ -. Fun ( F |` { A } ) ) )
6 2 5 sylibr
 |-  ( -. A e. _V -> -. F defAt A )