Description: A function is defined at any element of its domain. (Contributed by AV, 2-Sep-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | fundmdfat | |- ( ( Fun F /\ A e. dom F ) -> F defAt A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funres | |- ( Fun F -> Fun ( F |` { A } ) ) |
|
2 | 1 | anim1ci | |- ( ( Fun F /\ A e. dom F ) -> ( A e. dom F /\ Fun ( F |` { A } ) ) ) |
3 | df-dfat | |- ( F defAt A <-> ( A e. dom F /\ Fun ( F |` { A } ) ) ) |
|
4 | 2 3 | sylibr | |- ( ( Fun F /\ A e. dom F ) -> F defAt A ) |