Metamath Proof Explorer


Theorem afvnfundmuv

Description: If a set is not in the domain of a class or the class is not a function restricted to the set, then the function value for this set is the universe. (Contributed by Alexander van der Vekens, 26-May-2017)

Ref Expression
Assertion afvnfundmuv ( ¬ 𝐹 defAt 𝐴 → ( 𝐹 ''' 𝐴 ) = V )

Proof

Step Hyp Ref Expression
1 dfafv2 ( 𝐹 ''' 𝐴 ) = if ( 𝐹 defAt 𝐴 , ( 𝐹𝐴 ) , V )
2 iffalse ( ¬ 𝐹 defAt 𝐴 → if ( 𝐹 defAt 𝐴 , ( 𝐹𝐴 ) , V ) = V )
3 1 2 syl5eq ( ¬ 𝐹 defAt 𝐴 → ( 𝐹 ''' 𝐴 ) = V )