Metamath Proof Explorer


Theorem asclpropd

Description: If two structures have the same components (properties), one is an associative algebra iff the other one is. The last hypotheses on 1r can be discharged either by letting W = _V (if strong equality is known on .s ) or assuming K is a ring. (Contributed by Mario Carneiro, 5-Jul-2015)

Ref Expression
Hypotheses asclpropd.f
|- F = ( Scalar ` K )
asclpropd.g
|- G = ( Scalar ` L )
asclpropd.1
|- ( ph -> P = ( Base ` F ) )
asclpropd.2
|- ( ph -> P = ( Base ` G ) )
asclpropd.3
|- ( ( ph /\ ( x e. P /\ y e. W ) ) -> ( x ( .s ` K ) y ) = ( x ( .s ` L ) y ) )
asclpropd.4
|- ( ph -> ( 1r ` K ) = ( 1r ` L ) )
asclpropd.5
|- ( ph -> ( 1r ` K ) e. W )
Assertion asclpropd
|- ( ph -> ( algSc ` K ) = ( algSc ` L ) )

Proof

Step Hyp Ref Expression
1 asclpropd.f
 |-  F = ( Scalar ` K )
2 asclpropd.g
 |-  G = ( Scalar ` L )
3 asclpropd.1
 |-  ( ph -> P = ( Base ` F ) )
4 asclpropd.2
 |-  ( ph -> P = ( Base ` G ) )
5 asclpropd.3
 |-  ( ( ph /\ ( x e. P /\ y e. W ) ) -> ( x ( .s ` K ) y ) = ( x ( .s ` L ) y ) )
6 asclpropd.4
 |-  ( ph -> ( 1r ` K ) = ( 1r ` L ) )
7 asclpropd.5
 |-  ( ph -> ( 1r ` K ) e. W )
8 5 oveqrspc2v
 |-  ( ( ph /\ ( z e. P /\ ( 1r ` K ) e. W ) ) -> ( z ( .s ` K ) ( 1r ` K ) ) = ( z ( .s ` L ) ( 1r ` K ) ) )
9 8 anassrs
 |-  ( ( ( ph /\ z e. P ) /\ ( 1r ` K ) e. W ) -> ( z ( .s ` K ) ( 1r ` K ) ) = ( z ( .s ` L ) ( 1r ` K ) ) )
10 7 9 mpidan
 |-  ( ( ph /\ z e. P ) -> ( z ( .s ` K ) ( 1r ` K ) ) = ( z ( .s ` L ) ( 1r ` K ) ) )
11 6 oveq2d
 |-  ( ph -> ( z ( .s ` L ) ( 1r ` K ) ) = ( z ( .s ` L ) ( 1r ` L ) ) )
12 11 adantr
 |-  ( ( ph /\ z e. P ) -> ( z ( .s ` L ) ( 1r ` K ) ) = ( z ( .s ` L ) ( 1r ` L ) ) )
13 10 12 eqtrd
 |-  ( ( ph /\ z e. P ) -> ( z ( .s ` K ) ( 1r ` K ) ) = ( z ( .s ` L ) ( 1r ` L ) ) )
14 13 mpteq2dva
 |-  ( ph -> ( z e. P |-> ( z ( .s ` K ) ( 1r ` K ) ) ) = ( z e. P |-> ( z ( .s ` L ) ( 1r ` L ) ) ) )
15 3 mpteq1d
 |-  ( ph -> ( z e. P |-> ( z ( .s ` K ) ( 1r ` K ) ) ) = ( z e. ( Base ` F ) |-> ( z ( .s ` K ) ( 1r ` K ) ) ) )
16 4 mpteq1d
 |-  ( ph -> ( z e. P |-> ( z ( .s ` L ) ( 1r ` L ) ) ) = ( z e. ( Base ` G ) |-> ( z ( .s ` L ) ( 1r ` L ) ) ) )
17 14 15 16 3eqtr3d
 |-  ( ph -> ( z e. ( Base ` F ) |-> ( z ( .s ` K ) ( 1r ` K ) ) ) = ( z e. ( Base ` G ) |-> ( z ( .s ` L ) ( 1r ` L ) ) ) )
18 eqid
 |-  ( algSc ` K ) = ( algSc ` K )
19 eqid
 |-  ( Base ` F ) = ( Base ` F )
20 eqid
 |-  ( .s ` K ) = ( .s ` K )
21 eqid
 |-  ( 1r ` K ) = ( 1r ` K )
22 18 1 19 20 21 asclfval
 |-  ( algSc ` K ) = ( z e. ( Base ` F ) |-> ( z ( .s ` K ) ( 1r ` K ) ) )
23 eqid
 |-  ( algSc ` L ) = ( algSc ` L )
24 eqid
 |-  ( Base ` G ) = ( Base ` G )
25 eqid
 |-  ( .s ` L ) = ( .s ` L )
26 eqid
 |-  ( 1r ` L ) = ( 1r ` L )
27 23 2 24 25 26 asclfval
 |-  ( algSc ` L ) = ( z e. ( Base ` G ) |-> ( z ( .s ` L ) ( 1r ` L ) ) )
28 17 22 27 3eqtr4g
 |-  ( ph -> ( algSc ` K ) = ( algSc ` L ) )