Metamath Proof Explorer
Description: Distinct variable version of ax-6 , distinct variables case.
(Contributed by Mario Carneiro, 14-Aug-2015)
|
|
Ref |
Expression |
|
Assertion |
ax-9d2 |
|- -. A. x -. x = y |
Detailed syntax breakdown
Step |
Hyp |
Ref |
Expression |
0 |
|
vx |
|- x |
1 |
0
|
cv |
|- x |
2 |
|
vy |
|- y |
3 |
2
|
cv |
|- y |
4 |
1 3
|
wceq |
|- x = y |
5 |
4
|
wn |
|- -. x = y |
6 |
5 0
|
wal |
|- A. x -. x = y |
7 |
6
|
wn |
|- -. A. x -. x = y |