Metamath Proof Explorer


Axiom ax-9d2

Description: Distinct variable version of ax-6 , distinct variables case. (Contributed by Mario Carneiro, 14-Aug-2015)

Ref Expression
Assertion ax-9d2
|- -. A. x -. x = y

Detailed syntax breakdown

Step Hyp Ref Expression
0 vx
 |-  x
1 0 cv
 |-  x
2 vy
 |-  y
3 2 cv
 |-  y
4 1 3 wceq
 |-  x = y
5 4 wn
 |-  -. x = y
6 5 0 wal
 |-  A. x -. x = y
7 6 wn
 |-  -. A. x -. x = y