Metamath Proof Explorer


Axiom ax-9d2

Description: Distinct variable version of ax-6 , distinct variables case. (Contributed by Mario Carneiro, 14-Aug-2015)

Ref Expression
Assertion ax-9d2 ¬ ∀ 𝑥 ¬ 𝑥 = 𝑦

Detailed syntax breakdown

Step Hyp Ref Expression
0 vx 𝑥
1 0 cv 𝑥
2 vy 𝑦
3 2 cv 𝑦
4 1 3 wceq 𝑥 = 𝑦
5 4 wn ¬ 𝑥 = 𝑦
6 5 0 wal 𝑥 ¬ 𝑥 = 𝑦
7 6 wn ¬ ∀ 𝑥 ¬ 𝑥 = 𝑦