Metamath Proof Explorer
Description: Distinct variable version of axc11n . (Contributed by Mario Carneiro, 14-Aug-2015)
|
|
Ref |
Expression |
|
Assertion |
ax-10d |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑦 𝑦 = 𝑥 ) |
Detailed syntax breakdown
Step |
Hyp |
Ref |
Expression |
0 |
|
vx |
⊢ 𝑥 |
1 |
0
|
cv |
⊢ 𝑥 |
2 |
|
vy |
⊢ 𝑦 |
3 |
2
|
cv |
⊢ 𝑦 |
4 |
1 3
|
wceq |
⊢ 𝑥 = 𝑦 |
5 |
4 0
|
wal |
⊢ ∀ 𝑥 𝑥 = 𝑦 |
6 |
3 1
|
wceq |
⊢ 𝑦 = 𝑥 |
7 |
6 2
|
wal |
⊢ ∀ 𝑦 𝑦 = 𝑥 |
8 |
5 7
|
wi |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑦 𝑦 = 𝑥 ) |