Metamath Proof Explorer


Axiom ax-frege2

Description: If a proposition ch is a necessary consequence of two propositions ps and ph and one of those, ps , is in turn a necessary consequence of the other, ph , then the proposition ch is a necessary consequence of the latter one, ph , alone. Axiom 2 of Frege1879 p. 26. Identical to ax-2 . (Contributed by RP, 24-Dec-2019) (New usage is discouraged.)

Ref Expression
Assertion ax-frege2
|- ( ( ph -> ( ps -> ch ) ) -> ( ( ph -> ps ) -> ( ph -> ch ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 wph
 |-  ph
1 wps
 |-  ps
2 wch
 |-  ch
3 1 2 wi
 |-  ( ps -> ch )
4 0 3 wi
 |-  ( ph -> ( ps -> ch ) )
5 0 1 wi
 |-  ( ph -> ps )
6 0 2 wi
 |-  ( ph -> ch )
7 5 6 wi
 |-  ( ( ph -> ps ) -> ( ph -> ch ) )
8 4 7 wi
 |-  ( ( ph -> ( ps -> ch ) ) -> ( ( ph -> ps ) -> ( ph -> ch ) ) )