Metamath Proof Explorer


Axiom ax-frege2

Description: If a proposition ch is a necessary consequence of two propositions ps and ph and one of those, ps , is in turn a necessary consequence of the other, ph , then the proposition ch is a necessary consequence of the latter one, ph , alone. Axiom 2 of Frege1879 p. 26. Identical to ax-2 . (Contributed by RP, 24-Dec-2019) (New usage is discouraged.)

Ref Expression
Assertion ax-frege2 ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜒 ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 wph 𝜑
1 wps 𝜓
2 wch 𝜒
3 1 2 wi ( 𝜓𝜒 )
4 0 3 wi ( 𝜑 → ( 𝜓𝜒 ) )
5 0 1 wi ( 𝜑𝜓 )
6 0 2 wi ( 𝜑𝜒 )
7 5 6 wi ( ( 𝜑𝜓 ) → ( 𝜑𝜒 ) )
8 4 7 wi ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜒 ) ) )