Metamath Proof Explorer


Axiom ax-frege58b

Description: If A. x ph is affirmed, [ y / x ] ph cannot be denied. Identical to stdpc4 . Axiom 58 of Frege1879 p. 51. (Contributed by RP, 28-Mar-2020) (New usage is discouraged.)

Ref Expression
Assertion ax-frege58b
|- ( A. x ph -> [ y / x ] ph )

Detailed syntax breakdown

Step Hyp Ref Expression
0 vx
 |-  x
1 wph
 |-  ph
2 1 0 wal
 |-  A. x ph
3 vy
 |-  y
4 1 0 3 wsb
 |-  [ y / x ] ph
5 2 4 wi
 |-  ( A. x ph -> [ y / x ] ph )