Description: If A. x ph is affirmed, [ y / x ] ph cannot be denied. Identical to stdpc4 . Axiom 58 of Frege1879 p. 51. (Contributed by RP, 28-Mar-2020) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | ax-frege58b | |- ( A. x ph -> [ y / x ] ph ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | vx | |- x |
|
1 | wph | |- ph |
|
2 | 1 0 | wal | |- A. x ph |
3 | vy | |- y |
|
4 | 1 0 3 | wsb | |- [ y / x ] ph |
5 | 2 4 | wi | |- ( A. x ph -> [ y / x ] ph ) |