Metamath Proof Explorer


Axiom ax-regs

Description: A strong version of the Axiom of Regularity. It states that if there exists a set with property ph , then there must exist a set with property ph such that none of its elements have property ph . This axiom can be derived from the axioms of ZF set theory as shown in axregs , but this derivation relies on ax-inf2 and is thus not possible in a finitist context. (Contributed by BTernaryTau, 29-Dec-2025)

Ref Expression
Assertion ax-regs
|- ( E. x ph -> E. y ( A. x ( x = y -> ph ) /\ A. z ( z e. y -> -. A. x ( x = z -> ph ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 vx
 |-  x
1 wph
 |-  ph
2 1 0 wex
 |-  E. x ph
3 vy
 |-  y
4 0 cv
 |-  x
5 3 cv
 |-  y
6 4 5 wceq
 |-  x = y
7 6 1 wi
 |-  ( x = y -> ph )
8 7 0 wal
 |-  A. x ( x = y -> ph )
9 vz
 |-  z
10 9 cv
 |-  z
11 10 5 wcel
 |-  z e. y
12 4 10 wceq
 |-  x = z
13 12 1 wi
 |-  ( x = z -> ph )
14 13 0 wal
 |-  A. x ( x = z -> ph )
15 14 wn
 |-  -. A. x ( x = z -> ph )
16 11 15 wi
 |-  ( z e. y -> -. A. x ( x = z -> ph ) )
17 16 9 wal
 |-  A. z ( z e. y -> -. A. x ( x = z -> ph ) )
18 8 17 wa
 |-  ( A. x ( x = y -> ph ) /\ A. z ( z e. y -> -. A. x ( x = z -> ph ) ) )
19 18 3 wex
 |-  E. y ( A. x ( x = y -> ph ) /\ A. z ( z e. y -> -. A. x ( x = z -> ph ) ) )
20 2 19 wi
 |-  ( E. x ph -> E. y ( A. x ( x = y -> ph ) /\ A. z ( z e. y -> -. A. x ( x = z -> ph ) ) ) )