| Step |
Hyp |
Ref |
Expression |
| 0 |
|
vx |
|- x |
| 1 |
|
wph |
|- ph |
| 2 |
1 0
|
wex |
|- E. x ph |
| 3 |
|
vy |
|- y |
| 4 |
0
|
cv |
|- x |
| 5 |
3
|
cv |
|- y |
| 6 |
4 5
|
wceq |
|- x = y |
| 7 |
6 1
|
wi |
|- ( x = y -> ph ) |
| 8 |
7 0
|
wal |
|- A. x ( x = y -> ph ) |
| 9 |
|
vz |
|- z |
| 10 |
9
|
cv |
|- z |
| 11 |
10 5
|
wcel |
|- z e. y |
| 12 |
4 10
|
wceq |
|- x = z |
| 13 |
12 1
|
wi |
|- ( x = z -> ph ) |
| 14 |
13 0
|
wal |
|- A. x ( x = z -> ph ) |
| 15 |
14
|
wn |
|- -. A. x ( x = z -> ph ) |
| 16 |
11 15
|
wi |
|- ( z e. y -> -. A. x ( x = z -> ph ) ) |
| 17 |
16 9
|
wal |
|- A. z ( z e. y -> -. A. x ( x = z -> ph ) ) |
| 18 |
8 17
|
wa |
|- ( A. x ( x = y -> ph ) /\ A. z ( z e. y -> -. A. x ( x = z -> ph ) ) ) |
| 19 |
18 3
|
wex |
|- E. y ( A. x ( x = y -> ph ) /\ A. z ( z e. y -> -. A. x ( x = z -> ph ) ) ) |
| 20 |
2 19
|
wi |
|- ( E. x ph -> E. y ( A. x ( x = y -> ph ) /\ A. z ( z e. y -> -. A. x ( x = z -> ph ) ) ) ) |