Metamath Proof Explorer


Axiom ax-regs

Description: A strong version of the Axiom of Regularity. It states that if there exists a set with property ph , then there must exist a set with property ph such that none of its elements have property ph . This axiom can be derived from the axioms of ZF set theory as shown in axregs , but this derivation relies on ax-inf2 and is thus not possible in a finitist context. (Contributed by BTernaryTau, 29-Dec-2025)

Ref Expression
Assertion ax-regs x φ y x x = y φ z z y ¬ x x = z φ

Detailed syntax breakdown

Step Hyp Ref Expression
0 vx setvar x
1 wph wff φ
2 1 0 wex wff x φ
3 vy setvar y
4 0 cv setvar x
5 3 cv setvar y
6 4 5 wceq wff x = y
7 6 1 wi wff x = y φ
8 7 0 wal wff x x = y φ
9 vz setvar z
10 9 cv setvar z
11 10 5 wcel wff z y
12 4 10 wceq wff x = z
13 12 1 wi wff x = z φ
14 13 0 wal wff x x = z φ
15 14 wn wff ¬ x x = z φ
16 11 15 wi wff z y ¬ x x = z φ
17 16 9 wal wff z z y ¬ x x = z φ
18 8 17 wa wff x x = y φ z z y ¬ x x = z φ
19 18 3 wex wff y x x = y φ z z y ¬ x x = z φ
20 2 19 wi wff x φ y x x = y φ z z y ¬ x x = z φ