Description: Temporary duplicate of tgoldbachgt , provided as "axiom" as long as this theorem is in the mathbox of Thierry Arnoux: Odd integers greater than ( ; 1 0 ^ ; 2 7 ) have at least a representation as a sum of three odd primes. Final statement in section 7.4 of Helfgott p. 70 , expressed using the set G of odd numbers which can be written as a sum of three odd primes. (Contributed by Thierry Arnoux, 22-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ax-tgoldbachgt.o | |- O = { z e. ZZ | -. 2 || z } |
|
| ax-tgoldbachgt.g | |- G = { z e. O | E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. O /\ q e. O /\ r e. O ) /\ z = ( ( p + q ) + r ) ) } |
||
| Assertion | ax-tgoldbachgt | |- E. m e. NN ( m <_ ( ; 1 0 ^ ; 2 7 ) /\ A. n e. O ( m < n -> n e. G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | vm | |- m |
|
| 1 | cn | |- NN |
|
| 2 | 0 | cv | |- m |
| 3 | cle | |- <_ |
|
| 4 | c1 | |- 1 |
|
| 5 | cc0 | |- 0 |
|
| 6 | 4 5 | cdc | |- ; 1 0 |
| 7 | cexp | |- ^ |
|
| 8 | c2 | |- 2 |
|
| 9 | c7 | |- 7 |
|
| 10 | 8 9 | cdc | |- ; 2 7 |
| 11 | 6 10 7 | co | |- ( ; 1 0 ^ ; 2 7 ) |
| 12 | 2 11 3 | wbr | |- m <_ ( ; 1 0 ^ ; 2 7 ) |
| 13 | vn | |- n |
|
| 14 | cO | |- O |
|
| 15 | clt | |- < |
|
| 16 | 13 | cv | |- n |
| 17 | 2 16 15 | wbr | |- m < n |
| 18 | cG | |- G |
|
| 19 | 16 18 | wcel | |- n e. G |
| 20 | 17 19 | wi | |- ( m < n -> n e. G ) |
| 21 | 20 13 14 | wral | |- A. n e. O ( m < n -> n e. G ) |
| 22 | 12 21 | wa | |- ( m <_ ( ; 1 0 ^ ; 2 7 ) /\ A. n e. O ( m < n -> n e. G ) ) |
| 23 | 22 0 1 | wrex | |- E. m e. NN ( m <_ ( ; 1 0 ^ ; 2 7 ) /\ A. n e. O ( m < n -> n e. G ) ) |