Metamath Proof Explorer


Axiom ax-wl-11v

Description: Version of ax-11 with distinct variable conditions. Currently implemented as an axiom to detect unintended references to the foundational axiom ax-11 . It will later be converted into a theorem directly based on ax-11 . (Contributed by Wolf Lammen, 28-Jun-2019)

Ref Expression
Assertion ax-wl-11v
|- ( A. x A. y ph -> A. y A. x ph )

Detailed syntax breakdown

Step Hyp Ref Expression
0 vx
 |-  x
1 vy
 |-  y
2 wph
 |-  ph
3 2 1 wal
 |-  A. y ph
4 3 0 wal
 |-  A. x A. y ph
5 2 0 wal
 |-  A. x ph
6 5 1 wal
 |-  A. y A. x ph
7 4 6 wi
 |-  ( A. x A. y ph -> A. y A. x ph )