Description: Version of ax-11 with distinct variable conditions. Currently implemented as an axiom to detect unintended references to the foundational axiom ax-11 . It will later be converted into a theorem directly based on ax-11 . (Contributed by Wolf Lammen, 28-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ax-wl-11v | |- ( A. x A. y ph -> A. y A. x ph ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 0 | vx | |- x | |
| 1 | vy | |- y | |
| 2 | wph | |- ph | |
| 3 | 2 1 | wal | |- A. y ph | 
| 4 | 3 0 | wal | |- A. x A. y ph | 
| 5 | 2 0 | wal | |- A. x ph | 
| 6 | 5 1 | wal | |- A. y A. x ph | 
| 7 | 4 6 | wi | |- ( A. x A. y ph -> A. y A. x ph ) |