Metamath Proof Explorer


Theorem wl-ax11-lem1

Description: A transitive law for variable identifying expressions. (Contributed by Wolf Lammen, 30-Jun-2019)

Ref Expression
Assertion wl-ax11-lem1
|- ( A. x x = y -> ( A. x x = z <-> A. y y = z ) )

Proof

Step Hyp Ref Expression
1 wl-aetr
 |-  ( A. x x = y -> ( A. x x = z -> A. y y = z ) )
2 wl-aetr
 |-  ( A. y y = x -> ( A. y y = z -> A. x x = z ) )
3 2 aecoms
 |-  ( A. x x = y -> ( A. y y = z -> A. x x = z ) )
4 1 3 impbid
 |-  ( A. x x = y -> ( A. x x = z <-> A. y y = z ) )