Description: A transitive law for variable identifying expressions. (Contributed by Wolf Lammen, 30-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wl-ax11-lem1 | |- ( A. x x = y -> ( A. x x = z <-> A. y y = z ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | wl-aetr | |- ( A. x x = y -> ( A. x x = z -> A. y y = z ) ) | |
| 2 | wl-aetr | |- ( A. y y = x -> ( A. y y = z -> A. x x = z ) ) | |
| 3 | 2 | aecoms | |- ( A. x x = y -> ( A. y y = z -> A. x x = z ) ) | 
| 4 | 1 3 | impbid | |- ( A. x x = y -> ( A. x x = z <-> A. y y = z ) ) |