Description: A transitive law for variable identifying expressions. (Contributed by Wolf Lammen, 30-Jun-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | wl-ax11-lem1 | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑥 𝑥 = 𝑧 ↔ ∀ 𝑦 𝑦 = 𝑧 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wl-aetr | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑥 𝑥 = 𝑧 → ∀ 𝑦 𝑦 = 𝑧 ) ) | |
2 | wl-aetr | ⊢ ( ∀ 𝑦 𝑦 = 𝑥 → ( ∀ 𝑦 𝑦 = 𝑧 → ∀ 𝑥 𝑥 = 𝑧 ) ) | |
3 | 2 | aecoms | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑦 𝑦 = 𝑧 → ∀ 𝑥 𝑥 = 𝑧 ) ) |
4 | 1 3 | impbid | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑥 𝑥 = 𝑧 ↔ ∀ 𝑦 𝑦 = 𝑧 ) ) |