Description: A transitive law for variable identifying expressions. (Contributed by Wolf Lammen, 30-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wl-ax11-lem1 | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑥 𝑥 = 𝑧 ↔ ∀ 𝑦 𝑦 = 𝑧 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | wl-aetr | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑥 𝑥 = 𝑧 → ∀ 𝑦 𝑦 = 𝑧 ) ) | |
| 2 | wl-aetr | ⊢ ( ∀ 𝑦 𝑦 = 𝑥 → ( ∀ 𝑦 𝑦 = 𝑧 → ∀ 𝑥 𝑥 = 𝑧 ) ) | |
| 3 | 2 | aecoms | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑦 𝑦 = 𝑧 → ∀ 𝑥 𝑥 = 𝑧 ) ) | 
| 4 | 1 3 | impbid | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑥 𝑥 = 𝑧 ↔ ∀ 𝑦 𝑦 = 𝑧 ) ) |