Description: A transitive law for variable identifying expressions. (Contributed by Wolf Lammen, 30-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wl-aetr | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑥 𝑥 = 𝑧 → ∀ 𝑦 𝑦 = 𝑧 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ax7 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 = 𝑧 → 𝑦 = 𝑧 ) ) | |
| 2 | 1 | al2imi | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑥 𝑥 = 𝑧 → ∀ 𝑥 𝑦 = 𝑧 ) ) | 
| 3 | axc11 | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑥 𝑦 = 𝑧 → ∀ 𝑦 𝑦 = 𝑧 ) ) | |
| 4 | 2 3 | syld | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑥 𝑥 = 𝑧 → ∀ 𝑦 𝑦 = 𝑧 ) ) |