Description: A transitive law for variable identifying expressions. (Contributed by Wolf Lammen, 30-Jun-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | wl-aetr | |- ( A. x x = y -> ( A. x x = z -> A. y y = z ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax7 | |- ( x = y -> ( x = z -> y = z ) ) |
|
2 | 1 | al2imi | |- ( A. x x = y -> ( A. x x = z -> A. x y = z ) ) |
3 | axc11 | |- ( A. x x = y -> ( A. x y = z -> A. y y = z ) ) |
|
4 | 2 3 | syld | |- ( A. x x = y -> ( A. x x = z -> A. y y = z ) ) |