Metamath Proof Explorer


Theorem wl-axc11r

Description: Same as axc11r , but using ax12 instead of ax-12 directly. This better reflects axiom usage in theorems dependent on it. (Contributed by NM, 25-Jul-2015) Avoid direct use of ax-12 . (Revised by Wolf Lammen, 30-Mar-2024)

Ref Expression
Assertion wl-axc11r
|- ( A. y y = x -> ( A. x ph -> A. y ph ) )

Proof

Step Hyp Ref Expression
1 ax12
 |-  ( y = x -> ( A. x ph -> A. y ( y = x -> ph ) ) )
2 1 sps
 |-  ( A. y y = x -> ( A. x ph -> A. y ( y = x -> ph ) ) )
3 pm2.27
 |-  ( y = x -> ( ( y = x -> ph ) -> ph ) )
4 3 al2imi
 |-  ( A. y y = x -> ( A. y ( y = x -> ph ) -> A. y ph ) )
5 2 4 syld
 |-  ( A. y y = x -> ( A. x ph -> A. y ph ) )