Metamath Proof Explorer


Theorem wl-dral1d

Description: A version of dral1 with a context. Note: At first glance one might be tempted to generalize this (or a similar) theorem by weakening the first two hypotheses adding a x = y , A. x x = y or ph antecedent. wl-equsal1i and nf5di show that this is in fact pointless. (Contributed by Wolf Lammen, 28-Jul-2019)

Ref Expression
Hypotheses wl-dral1d.1
|- F/ x ph
wl-dral1d.2
|- F/ y ph
wl-dral1d.3
|- ( ph -> ( x = y -> ( ps <-> ch ) ) )
Assertion wl-dral1d
|- ( ph -> ( A. x x = y -> ( A. x ps <-> A. y ch ) ) )

Proof

Step Hyp Ref Expression
1 wl-dral1d.1
 |-  F/ x ph
2 wl-dral1d.2
 |-  F/ y ph
3 wl-dral1d.3
 |-  ( ph -> ( x = y -> ( ps <-> ch ) ) )
4 3 com12
 |-  ( x = y -> ( ph -> ( ps <-> ch ) ) )
5 4 pm5.74d
 |-  ( x = y -> ( ( ph -> ps ) <-> ( ph -> ch ) ) )
6 5 sps
 |-  ( A. x x = y -> ( ( ph -> ps ) <-> ( ph -> ch ) ) )
7 6 dral1
 |-  ( A. x x = y -> ( A. x ( ph -> ps ) <-> A. y ( ph -> ch ) ) )
8 1 19.21
 |-  ( A. x ( ph -> ps ) <-> ( ph -> A. x ps ) )
9 2 19.21
 |-  ( A. y ( ph -> ch ) <-> ( ph -> A. y ch ) )
10 7 8 9 3bitr3g
 |-  ( A. x x = y -> ( ( ph -> A. x ps ) <-> ( ph -> A. y ch ) ) )
11 10 pm5.74rd
 |-  ( A. x x = y -> ( ph -> ( A. x ps <-> A. y ch ) ) )
12 11 com12
 |-  ( ph -> ( A. x x = y -> ( A. x ps <-> A. y ch ) ) )