| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wl-dral1d.1 |
⊢ Ⅎ 𝑥 𝜑 |
| 2 |
|
wl-dral1d.2 |
⊢ Ⅎ 𝑦 𝜑 |
| 3 |
|
wl-dral1d.3 |
⊢ ( 𝜑 → ( 𝑥 = 𝑦 → ( 𝜓 ↔ 𝜒 ) ) ) |
| 4 |
3
|
com12 |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) ) |
| 5 |
4
|
pm5.74d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝜑 → 𝜓 ) ↔ ( 𝜑 → 𝜒 ) ) ) |
| 6 |
5
|
sps |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ( 𝜑 → 𝜓 ) ↔ ( 𝜑 → 𝜒 ) ) ) |
| 7 |
6
|
dral1 |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑥 ( 𝜑 → 𝜓 ) ↔ ∀ 𝑦 ( 𝜑 → 𝜒 ) ) ) |
| 8 |
1
|
19.21 |
⊢ ( ∀ 𝑥 ( 𝜑 → 𝜓 ) ↔ ( 𝜑 → ∀ 𝑥 𝜓 ) ) |
| 9 |
2
|
19.21 |
⊢ ( ∀ 𝑦 ( 𝜑 → 𝜒 ) ↔ ( 𝜑 → ∀ 𝑦 𝜒 ) ) |
| 10 |
7 8 9
|
3bitr3g |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ( 𝜑 → ∀ 𝑥 𝜓 ) ↔ ( 𝜑 → ∀ 𝑦 𝜒 ) ) ) |
| 11 |
10
|
pm5.74rd |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( 𝜑 → ( ∀ 𝑥 𝜓 ↔ ∀ 𝑦 𝜒 ) ) ) |
| 12 |
11
|
com12 |
⊢ ( 𝜑 → ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑥 𝜓 ↔ ∀ 𝑦 𝜒 ) ) ) |