Step |
Hyp |
Ref |
Expression |
1 |
|
wl-dral1d.1 |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
wl-dral1d.2 |
⊢ Ⅎ 𝑦 𝜑 |
3 |
|
wl-dral1d.3 |
⊢ ( 𝜑 → ( 𝑥 = 𝑦 → ( 𝜓 ↔ 𝜒 ) ) ) |
4 |
3
|
com12 |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) ) |
5 |
4
|
pm5.74d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝜑 → 𝜓 ) ↔ ( 𝜑 → 𝜒 ) ) ) |
6 |
5
|
sps |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ( 𝜑 → 𝜓 ) ↔ ( 𝜑 → 𝜒 ) ) ) |
7 |
6
|
dral1 |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑥 ( 𝜑 → 𝜓 ) ↔ ∀ 𝑦 ( 𝜑 → 𝜒 ) ) ) |
8 |
1
|
19.21 |
⊢ ( ∀ 𝑥 ( 𝜑 → 𝜓 ) ↔ ( 𝜑 → ∀ 𝑥 𝜓 ) ) |
9 |
2
|
19.21 |
⊢ ( ∀ 𝑦 ( 𝜑 → 𝜒 ) ↔ ( 𝜑 → ∀ 𝑦 𝜒 ) ) |
10 |
7 8 9
|
3bitr3g |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ( 𝜑 → ∀ 𝑥 𝜓 ) ↔ ( 𝜑 → ∀ 𝑦 𝜒 ) ) ) |
11 |
10
|
pm5.74rd |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( 𝜑 → ( ∀ 𝑥 𝜓 ↔ ∀ 𝑦 𝜒 ) ) ) |
12 |
11
|
com12 |
⊢ ( 𝜑 → ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑥 𝜓 ↔ ∀ 𝑦 𝜒 ) ) ) |