Metamath Proof Explorer


Theorem wl-equsal1i

Description: The antecedent x = y is irrelevant, if one or both setvar variables are not free in ph . (Contributed by Wolf Lammen, 1-Sep-2018)

Ref Expression
Hypotheses wl-equsal1i.1 ( Ⅎ 𝑥 𝜑 ∨ Ⅎ 𝑦 𝜑 )
wl-equsal1i.2 ( 𝑥 = 𝑦𝜑 )
Assertion wl-equsal1i 𝜑

Proof

Step Hyp Ref Expression
1 wl-equsal1i.1 ( Ⅎ 𝑥 𝜑 ∨ Ⅎ 𝑦 𝜑 )
2 wl-equsal1i.2 ( 𝑥 = 𝑦𝜑 )
3 2 gen2 𝑥𝑦 ( 𝑥 = 𝑦𝜑 )
4 sp ( ∀ 𝑦𝑥 ( 𝑥 = 𝑦𝜑 ) → ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) )
5 4 alcoms ( ∀ 𝑥𝑦 ( 𝑥 = 𝑦𝜑 ) → ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) )
6 wl-equsal1t ( Ⅎ 𝑥 𝜑 → ( ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) ↔ 𝜑 ) )
7 5 6 syl5ib ( Ⅎ 𝑥 𝜑 → ( ∀ 𝑥𝑦 ( 𝑥 = 𝑦𝜑 ) → 𝜑 ) )
8 wl-equsalcom ( ∀ 𝑦 ( 𝑦 = 𝑥𝜑 ) ↔ ∀ 𝑦 ( 𝑥 = 𝑦𝜑 ) )
9 wl-equsal1t ( Ⅎ 𝑦 𝜑 → ( ∀ 𝑦 ( 𝑦 = 𝑥𝜑 ) ↔ 𝜑 ) )
10 9 biimpd ( Ⅎ 𝑦 𝜑 → ( ∀ 𝑦 ( 𝑦 = 𝑥𝜑 ) → 𝜑 ) )
11 8 10 syl5bir ( Ⅎ 𝑦 𝜑 → ( ∀ 𝑦 ( 𝑥 = 𝑦𝜑 ) → 𝜑 ) )
12 11 spsd ( Ⅎ 𝑦 𝜑 → ( ∀ 𝑥𝑦 ( 𝑥 = 𝑦𝜑 ) → 𝜑 ) )
13 7 12 jaoi ( ( Ⅎ 𝑥 𝜑 ∨ Ⅎ 𝑦 𝜑 ) → ( ∀ 𝑥𝑦 ( 𝑥 = 𝑦𝜑 ) → 𝜑 ) )
14 1 3 13 mp2 𝜑