Step |
Hyp |
Ref |
Expression |
1 |
|
wl-equsal1i.1 |
⊢ ( Ⅎ 𝑥 𝜑 ∨ Ⅎ 𝑦 𝜑 ) |
2 |
|
wl-equsal1i.2 |
⊢ ( 𝑥 = 𝑦 → 𝜑 ) |
3 |
2
|
gen2 |
⊢ ∀ 𝑥 ∀ 𝑦 ( 𝑥 = 𝑦 → 𝜑 ) |
4 |
|
sp |
⊢ ( ∀ 𝑦 ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) |
5 |
4
|
alcoms |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 = 𝑦 → 𝜑 ) → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) |
6 |
|
wl-equsal1t |
⊢ ( Ⅎ 𝑥 𝜑 → ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ↔ 𝜑 ) ) |
7 |
5 6
|
syl5ib |
⊢ ( Ⅎ 𝑥 𝜑 → ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 = 𝑦 → 𝜑 ) → 𝜑 ) ) |
8 |
|
wl-equsalcom |
⊢ ( ∀ 𝑦 ( 𝑦 = 𝑥 → 𝜑 ) ↔ ∀ 𝑦 ( 𝑥 = 𝑦 → 𝜑 ) ) |
9 |
|
wl-equsal1t |
⊢ ( Ⅎ 𝑦 𝜑 → ( ∀ 𝑦 ( 𝑦 = 𝑥 → 𝜑 ) ↔ 𝜑 ) ) |
10 |
9
|
biimpd |
⊢ ( Ⅎ 𝑦 𝜑 → ( ∀ 𝑦 ( 𝑦 = 𝑥 → 𝜑 ) → 𝜑 ) ) |
11 |
8 10
|
syl5bir |
⊢ ( Ⅎ 𝑦 𝜑 → ( ∀ 𝑦 ( 𝑥 = 𝑦 → 𝜑 ) → 𝜑 ) ) |
12 |
11
|
spsd |
⊢ ( Ⅎ 𝑦 𝜑 → ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 = 𝑦 → 𝜑 ) → 𝜑 ) ) |
13 |
7 12
|
jaoi |
⊢ ( ( Ⅎ 𝑥 𝜑 ∨ Ⅎ 𝑦 𝜑 ) → ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 = 𝑦 → 𝜑 ) → 𝜑 ) ) |
14 |
1 3 13
|
mp2 |
⊢ 𝜑 |