Metamath Proof Explorer


Theorem wl-sb6rft

Description: A specialization of wl-equsal1t . Closed form of sb6rf . (Contributed by Wolf Lammen, 27-Jul-2019)

Ref Expression
Assertion wl-sb6rft ( Ⅎ 𝑥 𝜑 → ( 𝜑 ↔ ∀ 𝑥 ( 𝑥 = 𝑦 → [ 𝑥 / 𝑦 ] 𝜑 ) ) )

Proof

Step Hyp Ref Expression
1 nfnf1 𝑥𝑥 𝜑
2 id ( Ⅎ 𝑥 𝜑 → Ⅎ 𝑥 𝜑 )
3 sbequ12r ( 𝑥 = 𝑦 → ( [ 𝑥 / 𝑦 ] 𝜑𝜑 ) )
4 3 a1i ( Ⅎ 𝑥 𝜑 → ( 𝑥 = 𝑦 → ( [ 𝑥 / 𝑦 ] 𝜑𝜑 ) ) )
5 1 2 4 wl-equsald ( Ⅎ 𝑥 𝜑 → ( ∀ 𝑥 ( 𝑥 = 𝑦 → [ 𝑥 / 𝑦 ] 𝜑 ) ↔ 𝜑 ) )
6 5 bicomd ( Ⅎ 𝑥 𝜑 → ( 𝜑 ↔ ∀ 𝑥 ( 𝑥 = 𝑦 → [ 𝑥 / 𝑦 ] 𝜑 ) ) )