Description: A specialization of wl-equsal1t . Closed form of sb6rf . (Contributed by Wolf Lammen, 27-Jul-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | wl-sb6rft | ⊢ ( Ⅎ 𝑥 𝜑 → ( 𝜑 ↔ ∀ 𝑥 ( 𝑥 = 𝑦 → [ 𝑥 / 𝑦 ] 𝜑 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfnf1 | ⊢ Ⅎ 𝑥 Ⅎ 𝑥 𝜑 | |
2 | id | ⊢ ( Ⅎ 𝑥 𝜑 → Ⅎ 𝑥 𝜑 ) | |
3 | sbequ12r | ⊢ ( 𝑥 = 𝑦 → ( [ 𝑥 / 𝑦 ] 𝜑 ↔ 𝜑 ) ) | |
4 | 3 | a1i | ⊢ ( Ⅎ 𝑥 𝜑 → ( 𝑥 = 𝑦 → ( [ 𝑥 / 𝑦 ] 𝜑 ↔ 𝜑 ) ) ) |
5 | 1 2 4 | wl-equsald | ⊢ ( Ⅎ 𝑥 𝜑 → ( ∀ 𝑥 ( 𝑥 = 𝑦 → [ 𝑥 / 𝑦 ] 𝜑 ) ↔ 𝜑 ) ) |
6 | 5 | bicomd | ⊢ ( Ⅎ 𝑥 𝜑 → ( 𝜑 ↔ ∀ 𝑥 ( 𝑥 = 𝑦 → [ 𝑥 / 𝑦 ] 𝜑 ) ) ) |