Metamath Proof Explorer


Theorem wl-sb6rft

Description: A specialization of wl-equsal1t . Closed form of sb6rf . (Contributed by Wolf Lammen, 27-Jul-2019)

Ref Expression
Assertion wl-sb6rft x φ φ x x = y x y φ

Proof

Step Hyp Ref Expression
1 nfnf1 x x φ
2 id x φ x φ
3 sbequ12r x = y x y φ φ
4 3 a1i x φ x = y x y φ φ
5 1 2 4 wl-equsald x φ x x = y x y φ φ
6 5 bicomd x φ φ x x = y x y φ