Description: A specialization of wl-equsal1t . Closed form of sb6rf . (Contributed by Wolf Lammen, 27-Jul-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | wl-sb6rft | |- ( F/ x ph -> ( ph <-> A. x ( x = y -> [ x / y ] ph ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfnf1 | |- F/ x F/ x ph |
|
2 | id | |- ( F/ x ph -> F/ x ph ) |
|
3 | sbequ12r | |- ( x = y -> ( [ x / y ] ph <-> ph ) ) |
|
4 | 3 | a1i | |- ( F/ x ph -> ( x = y -> ( [ x / y ] ph <-> ph ) ) ) |
5 | 1 2 4 | wl-equsald | |- ( F/ x ph -> ( A. x ( x = y -> [ x / y ] ph ) <-> ph ) ) |
6 | 5 | bicomd | |- ( F/ x ph -> ( ph <-> A. x ( x = y -> [ x / y ] ph ) ) ) |