Metamath Proof Explorer


Theorem wl-sb6rft

Description: A specialization of wl-equsal1t . Closed form of sb6rf . (Contributed by Wolf Lammen, 27-Jul-2019)

Ref Expression
Assertion wl-sb6rft
|- ( F/ x ph -> ( ph <-> A. x ( x = y -> [ x / y ] ph ) ) )

Proof

Step Hyp Ref Expression
1 nfnf1
 |-  F/ x F/ x ph
2 id
 |-  ( F/ x ph -> F/ x ph )
3 sbequ12r
 |-  ( x = y -> ( [ x / y ] ph <-> ph ) )
4 3 a1i
 |-  ( F/ x ph -> ( x = y -> ( [ x / y ] ph <-> ph ) ) )
5 1 2 4 wl-equsald
 |-  ( F/ x ph -> ( A. x ( x = y -> [ x / y ] ph ) <-> ph ) )
6 5 bicomd
 |-  ( F/ x ph -> ( ph <-> A. x ( x = y -> [ x / y ] ph ) ) )