Description: An equality theorem for substitution. (Contributed by NM, 6-Oct-2004) (Proof shortened by Andrew Salmon, 21-Jun-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | sbequ12r | |- ( x = y -> ( [ x / y ] ph <-> ph ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbequ12 | |- ( y = x -> ( ph <-> [ x / y ] ph ) ) |
|
2 | 1 | bicomd | |- ( y = x -> ( [ x / y ] ph <-> ph ) ) |
3 | 2 | equcoms | |- ( x = y -> ( [ x / y ] ph <-> ph ) ) |