Step |
Hyp |
Ref |
Expression |
1 |
|
wl-equsald.1 |
|- F/ x ph |
2 |
|
wl-equsald.2 |
|- ( ph -> F/ x ch ) |
3 |
|
wl-equsald.3 |
|- ( ph -> ( x = y -> ( ps <-> ch ) ) ) |
4 |
|
19.23t |
|- ( F/ x ch -> ( A. x ( x = y -> ch ) <-> ( E. x x = y -> ch ) ) ) |
5 |
2 4
|
syl |
|- ( ph -> ( A. x ( x = y -> ch ) <-> ( E. x x = y -> ch ) ) ) |
6 |
3
|
pm5.74d |
|- ( ph -> ( ( x = y -> ps ) <-> ( x = y -> ch ) ) ) |
7 |
1 6
|
albid |
|- ( ph -> ( A. x ( x = y -> ps ) <-> A. x ( x = y -> ch ) ) ) |
8 |
|
ax6e |
|- E. x x = y |
9 |
8
|
a1bi |
|- ( ch <-> ( E. x x = y -> ch ) ) |
10 |
9
|
a1i |
|- ( ph -> ( ch <-> ( E. x x = y -> ch ) ) ) |
11 |
5 7 10
|
3bitr4d |
|- ( ph -> ( A. x ( x = y -> ps ) <-> ch ) ) |