Metamath Proof Explorer


Theorem wl-equsald

Description: Deduction version of equsal . (Contributed by Wolf Lammen, 27-Jul-2019)

Ref Expression
Hypotheses wl-equsald.1
|- F/ x ph
wl-equsald.2
|- ( ph -> F/ x ch )
wl-equsald.3
|- ( ph -> ( x = y -> ( ps <-> ch ) ) )
Assertion wl-equsald
|- ( ph -> ( A. x ( x = y -> ps ) <-> ch ) )

Proof

Step Hyp Ref Expression
1 wl-equsald.1
 |-  F/ x ph
2 wl-equsald.2
 |-  ( ph -> F/ x ch )
3 wl-equsald.3
 |-  ( ph -> ( x = y -> ( ps <-> ch ) ) )
4 19.23t
 |-  ( F/ x ch -> ( A. x ( x = y -> ch ) <-> ( E. x x = y -> ch ) ) )
5 2 4 syl
 |-  ( ph -> ( A. x ( x = y -> ch ) <-> ( E. x x = y -> ch ) ) )
6 3 pm5.74d
 |-  ( ph -> ( ( x = y -> ps ) <-> ( x = y -> ch ) ) )
7 1 6 albid
 |-  ( ph -> ( A. x ( x = y -> ps ) <-> A. x ( x = y -> ch ) ) )
8 ax6e
 |-  E. x x = y
9 8 a1bi
 |-  ( ch <-> ( E. x x = y -> ch ) )
10 9 a1i
 |-  ( ph -> ( ch <-> ( E. x x = y -> ch ) ) )
11 5 7 10 3bitr4d
 |-  ( ph -> ( A. x ( x = y -> ps ) <-> ch ) )