Metamath Proof Explorer


Theorem wl-equsald

Description: Deduction version of equsal . (Contributed by Wolf Lammen, 27-Jul-2019)

Ref Expression
Hypotheses wl-equsald.1 𝑥 𝜑
wl-equsald.2 ( 𝜑 → Ⅎ 𝑥 𝜒 )
wl-equsald.3 ( 𝜑 → ( 𝑥 = 𝑦 → ( 𝜓𝜒 ) ) )
Assertion wl-equsald ( 𝜑 → ( ∀ 𝑥 ( 𝑥 = 𝑦𝜓 ) ↔ 𝜒 ) )

Proof

Step Hyp Ref Expression
1 wl-equsald.1 𝑥 𝜑
2 wl-equsald.2 ( 𝜑 → Ⅎ 𝑥 𝜒 )
3 wl-equsald.3 ( 𝜑 → ( 𝑥 = 𝑦 → ( 𝜓𝜒 ) ) )
4 19.23t ( Ⅎ 𝑥 𝜒 → ( ∀ 𝑥 ( 𝑥 = 𝑦𝜒 ) ↔ ( ∃ 𝑥 𝑥 = 𝑦𝜒 ) ) )
5 2 4 syl ( 𝜑 → ( ∀ 𝑥 ( 𝑥 = 𝑦𝜒 ) ↔ ( ∃ 𝑥 𝑥 = 𝑦𝜒 ) ) )
6 3 pm5.74d ( 𝜑 → ( ( 𝑥 = 𝑦𝜓 ) ↔ ( 𝑥 = 𝑦𝜒 ) ) )
7 1 6 albid ( 𝜑 → ( ∀ 𝑥 ( 𝑥 = 𝑦𝜓 ) ↔ ∀ 𝑥 ( 𝑥 = 𝑦𝜒 ) ) )
8 ax6e 𝑥 𝑥 = 𝑦
9 8 a1bi ( 𝜒 ↔ ( ∃ 𝑥 𝑥 = 𝑦𝜒 ) )
10 9 a1i ( 𝜑 → ( 𝜒 ↔ ( ∃ 𝑥 𝑥 = 𝑦𝜒 ) ) )
11 5 7 10 3bitr4d ( 𝜑 → ( ∀ 𝑥 ( 𝑥 = 𝑦𝜓 ) ↔ 𝜒 ) )