Step |
Hyp |
Ref |
Expression |
1 |
|
wl-equsald.1 |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
wl-equsald.2 |
⊢ ( 𝜑 → Ⅎ 𝑥 𝜒 ) |
3 |
|
wl-equsald.3 |
⊢ ( 𝜑 → ( 𝑥 = 𝑦 → ( 𝜓 ↔ 𝜒 ) ) ) |
4 |
|
19.23t |
⊢ ( Ⅎ 𝑥 𝜒 → ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜒 ) ↔ ( ∃ 𝑥 𝑥 = 𝑦 → 𝜒 ) ) ) |
5 |
2 4
|
syl |
⊢ ( 𝜑 → ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜒 ) ↔ ( ∃ 𝑥 𝑥 = 𝑦 → 𝜒 ) ) ) |
6 |
3
|
pm5.74d |
⊢ ( 𝜑 → ( ( 𝑥 = 𝑦 → 𝜓 ) ↔ ( 𝑥 = 𝑦 → 𝜒 ) ) ) |
7 |
1 6
|
albid |
⊢ ( 𝜑 → ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜓 ) ↔ ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜒 ) ) ) |
8 |
|
ax6e |
⊢ ∃ 𝑥 𝑥 = 𝑦 |
9 |
8
|
a1bi |
⊢ ( 𝜒 ↔ ( ∃ 𝑥 𝑥 = 𝑦 → 𝜒 ) ) |
10 |
9
|
a1i |
⊢ ( 𝜑 → ( 𝜒 ↔ ( ∃ 𝑥 𝑥 = 𝑦 → 𝜒 ) ) ) |
11 |
5 7 10
|
3bitr4d |
⊢ ( 𝜑 → ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜓 ) ↔ 𝜒 ) ) |