Metamath Proof Explorer


Theorem wl-equsal

Description: A useful equivalence related to substitution. (Contributed by NM, 2-Jun-1993) (Proof shortened by Andrew Salmon, 12-Aug-2011) (Revised by Mario Carneiro, 3-Oct-2016) It seems proving wl-equsald first, and then deriving more specialized versions wl-equsal and wl-equsal1t then is more efficient than the other way round, which is possible, too. See also equsal . (Revised by Wolf Lammen, 27-Jul-2019) (Proof modification is discouraged.)

Ref Expression
Hypotheses wl-equsal.1
|- F/ x ps
wl-equsal.2
|- ( x = y -> ( ph <-> ps ) )
Assertion wl-equsal
|- ( A. x ( x = y -> ph ) <-> ps )

Proof

Step Hyp Ref Expression
1 wl-equsal.1
 |-  F/ x ps
2 wl-equsal.2
 |-  ( x = y -> ( ph <-> ps ) )
3 nftru
 |-  F/ x T.
4 1 a1i
 |-  ( T. -> F/ x ps )
5 2 a1i
 |-  ( T. -> ( x = y -> ( ph <-> ps ) ) )
6 3 4 5 wl-equsald
 |-  ( T. -> ( A. x ( x = y -> ph ) <-> ps ) )
7 6 mptru
 |-  ( A. x ( x = y -> ph ) <-> ps )