Metamath Proof Explorer


Theorem wl-equsal1i

Description: The antecedent x = y is irrelevant, if one or both setvar variables are not free in ph . (Contributed by Wolf Lammen, 1-Sep-2018)

Ref Expression
Hypotheses wl-equsal1i.1 xφyφ
wl-equsal1i.2 x=yφ
Assertion wl-equsal1i φ

Proof

Step Hyp Ref Expression
1 wl-equsal1i.1 xφyφ
2 wl-equsal1i.2 x=yφ
3 2 gen2 xyx=yφ
4 sp yxx=yφxx=yφ
5 4 alcoms xyx=yφxx=yφ
6 wl-equsal1t xφxx=yφφ
7 5 6 imbitrid xφxyx=yφφ
8 wl-equsalcom yy=xφyx=yφ
9 wl-equsal1t yφyy=xφφ
10 9 biimpd yφyy=xφφ
11 8 10 biimtrrid yφyx=yφφ
12 11 spsd yφxyx=yφφ
13 7 12 jaoi xφyφxyx=yφφ
14 1 3 13 mp2 φ