Metamath Proof Explorer


Theorem wl-equsalcom

Description: This simple equivalence eases substitution of one expression for the other. (Contributed by Wolf Lammen, 1-Sep-2018)

Ref Expression
Assertion wl-equsalcom x x = y φ x y = x φ

Proof

Step Hyp Ref Expression
1 equcom x = y y = x
2 1 imbi1i x = y φ y = x φ
3 2 albii x x = y φ x y = x φ