Description: This simple equivalence eases substitution of one expression for the other. (Contributed by Wolf Lammen, 1-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wl-equsalcom | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ↔ ∀ 𝑥 ( 𝑦 = 𝑥 → 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equcom | ⊢ ( 𝑥 = 𝑦 ↔ 𝑦 = 𝑥 ) | |
| 2 | 1 | imbi1i | ⊢ ( ( 𝑥 = 𝑦 → 𝜑 ) ↔ ( 𝑦 = 𝑥 → 𝜑 ) ) |
| 3 | 2 | albii | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ↔ ∀ 𝑥 ( 𝑦 = 𝑥 → 𝜑 ) ) |