Description: This simple equivalence eases substitution of one expression for the other. (Contributed by Wolf Lammen, 1-Sep-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | wl-equsalcom | |- ( A. x ( x = y -> ph ) <-> A. x ( y = x -> ph ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equcom | |- ( x = y <-> y = x ) |
|
2 | 1 | imbi1i | |- ( ( x = y -> ph ) <-> ( y = x -> ph ) ) |
3 | 2 | albii | |- ( A. x ( x = y -> ph ) <-> A. x ( y = x -> ph ) ) |