Metamath Proof Explorer


Theorem alcoms

Description: Swap quantifiers in an antecedent. (Contributed by NM, 11-May-1993)

Ref Expression
Hypothesis alcoms.1 xyφψ
Assertion alcoms yxφψ

Proof

Step Hyp Ref Expression
1 alcoms.1 xyφψ
2 ax-11 yxφxyφ
3 2 1 syl yxφψ