Metamath Proof Explorer


Theorem wl-cbvalnaed

Description: wl-cbvalnae with a context. (Contributed by Wolf Lammen, 28-Jul-2019)

Ref Expression
Hypotheses wl-cbvalnaed.1 𝑥 𝜑
wl-cbvalnaed.2 𝑦 𝜑
wl-cbvalnaed.3 ( 𝜑 → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑦 𝜓 ) )
wl-cbvalnaed.4 ( 𝜑 → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝜒 ) )
wl-cbvalnaed.5 ( 𝜑 → ( 𝑥 = 𝑦 → ( 𝜓𝜒 ) ) )
Assertion wl-cbvalnaed ( 𝜑 → ( ∀ 𝑥 𝜓 ↔ ∀ 𝑦 𝜒 ) )

Proof

Step Hyp Ref Expression
1 wl-cbvalnaed.1 𝑥 𝜑
2 wl-cbvalnaed.2 𝑦 𝜑
3 wl-cbvalnaed.3 ( 𝜑 → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑦 𝜓 ) )
4 wl-cbvalnaed.4 ( 𝜑 → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝜒 ) )
5 wl-cbvalnaed.5 ( 𝜑 → ( 𝑥 = 𝑦 → ( 𝜓𝜒 ) ) )
6 1 2 5 wl-dral1d ( 𝜑 → ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑥 𝜓 ↔ ∀ 𝑦 𝜒 ) ) )
7 6 imp ( ( 𝜑 ∧ ∀ 𝑥 𝑥 = 𝑦 ) → ( ∀ 𝑥 𝜓 ↔ ∀ 𝑦 𝜒 ) )
8 nfnae 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑦
9 1 8 nfan 𝑥 ( 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 )
10 wl-nfnae1 𝑦 ¬ ∀ 𝑥 𝑥 = 𝑦
11 2 10 nfan 𝑦 ( 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 )
12 3 imp ( ( 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → Ⅎ 𝑦 𝜓 )
13 4 imp ( ( 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → Ⅎ 𝑥 𝜒 )
14 5 adantr ( ( 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → ( 𝑥 = 𝑦 → ( 𝜓𝜒 ) ) )
15 9 11 12 13 14 cbv2 ( ( 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → ( ∀ 𝑥 𝜓 ↔ ∀ 𝑦 𝜒 ) )
16 7 15 pm2.61dan ( 𝜑 → ( ∀ 𝑥 𝜓 ↔ ∀ 𝑦 𝜒 ) )