| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wl-cbvalnaed.1 |
⊢ Ⅎ 𝑥 𝜑 |
| 2 |
|
wl-cbvalnaed.2 |
⊢ Ⅎ 𝑦 𝜑 |
| 3 |
|
wl-cbvalnaed.3 |
⊢ ( 𝜑 → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑦 𝜓 ) ) |
| 4 |
|
wl-cbvalnaed.4 |
⊢ ( 𝜑 → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝜒 ) ) |
| 5 |
|
wl-cbvalnaed.5 |
⊢ ( 𝜑 → ( 𝑥 = 𝑦 → ( 𝜓 ↔ 𝜒 ) ) ) |
| 6 |
1 2 5
|
wl-dral1d |
⊢ ( 𝜑 → ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑥 𝜓 ↔ ∀ 𝑦 𝜒 ) ) ) |
| 7 |
6
|
imp |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 𝑥 = 𝑦 ) → ( ∀ 𝑥 𝜓 ↔ ∀ 𝑦 𝜒 ) ) |
| 8 |
|
nfnae |
⊢ Ⅎ 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑦 |
| 9 |
1 8
|
nfan |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) |
| 10 |
|
wl-nfnae1 |
⊢ Ⅎ 𝑦 ¬ ∀ 𝑥 𝑥 = 𝑦 |
| 11 |
2 10
|
nfan |
⊢ Ⅎ 𝑦 ( 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) |
| 12 |
3
|
imp |
⊢ ( ( 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → Ⅎ 𝑦 𝜓 ) |
| 13 |
4
|
imp |
⊢ ( ( 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → Ⅎ 𝑥 𝜒 ) |
| 14 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → ( 𝑥 = 𝑦 → ( 𝜓 ↔ 𝜒 ) ) ) |
| 15 |
9 11 12 13 14
|
cbv2 |
⊢ ( ( 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → ( ∀ 𝑥 𝜓 ↔ ∀ 𝑦 𝜒 ) ) |
| 16 |
7 15
|
pm2.61dan |
⊢ ( 𝜑 → ( ∀ 𝑥 𝜓 ↔ ∀ 𝑦 𝜒 ) ) |