Metamath Proof Explorer


Theorem wl-cbvalnae

Description: A more general version of cbval when nonfree properties depend on a distinctor. Such expressions arise in proofs aiming at the elimination of distinct variable constraints, specifically in application of dvelimf , nfsb2 or dveeq1 . (Contributed by Wolf Lammen, 4-Jun-2019)

Ref Expression
Hypotheses wl-cbvalnae.1 ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑦 𝜑 )
wl-cbvalnae.2 ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝜓 )
wl-cbvalnae.3 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
Assertion wl-cbvalnae ( ∀ 𝑥 𝜑 ↔ ∀ 𝑦 𝜓 )

Proof

Step Hyp Ref Expression
1 wl-cbvalnae.1 ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑦 𝜑 )
2 wl-cbvalnae.2 ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝜓 )
3 wl-cbvalnae.3 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
4 nftru 𝑥
5 nftru 𝑦
6 1 a1i ( ⊤ → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑦 𝜑 ) )
7 2 a1i ( ⊤ → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝜓 ) )
8 3 a1i ( ⊤ → ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) ) )
9 4 5 6 7 8 wl-cbvalnaed ( ⊤ → ( ∀ 𝑥 𝜑 ↔ ∀ 𝑦 𝜓 ) )
10 9 mptru ( ∀ 𝑥 𝜑 ↔ ∀ 𝑦 𝜓 )