| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nfeqf |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 𝑦 = 𝑧 ) |
| 2 |
1
|
19.9d |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → ( ∃ 𝑥 𝑦 = 𝑧 → 𝑦 = 𝑧 ) ) |
| 3 |
2
|
impancom |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ∃ 𝑥 𝑦 = 𝑧 ) → ( ¬ ∀ 𝑥 𝑥 = 𝑧 → 𝑦 = 𝑧 ) ) |
| 4 |
3
|
orrd |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ∃ 𝑥 𝑦 = 𝑧 ) → ( ∀ 𝑥 𝑥 = 𝑧 ∨ 𝑦 = 𝑧 ) ) |
| 5 |
4
|
expcom |
⊢ ( ∃ 𝑥 𝑦 = 𝑧 → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑥 𝑥 = 𝑧 ∨ 𝑦 = 𝑧 ) ) ) |
| 6 |
5
|
orrd |
⊢ ( ∃ 𝑥 𝑦 = 𝑧 → ( ∀ 𝑥 𝑥 = 𝑦 ∨ ( ∀ 𝑥 𝑥 = 𝑧 ∨ 𝑦 = 𝑧 ) ) ) |
| 7 |
|
3orass |
⊢ ( ( ∀ 𝑥 𝑥 = 𝑦 ∨ ∀ 𝑥 𝑥 = 𝑧 ∨ 𝑦 = 𝑧 ) ↔ ( ∀ 𝑥 𝑥 = 𝑦 ∨ ( ∀ 𝑥 𝑥 = 𝑧 ∨ 𝑦 = 𝑧 ) ) ) |
| 8 |
6 7
|
sylibr |
⊢ ( ∃ 𝑥 𝑦 = 𝑧 → ( ∀ 𝑥 𝑥 = 𝑦 ∨ ∀ 𝑥 𝑥 = 𝑧 ∨ 𝑦 = 𝑧 ) ) |
| 9 |
|
3orrot |
⊢ ( ( 𝑦 = 𝑧 ∨ ∀ 𝑥 𝑥 = 𝑦 ∨ ∀ 𝑥 𝑥 = 𝑧 ) ↔ ( ∀ 𝑥 𝑥 = 𝑦 ∨ ∀ 𝑥 𝑥 = 𝑧 ∨ 𝑦 = 𝑧 ) ) |
| 10 |
8 9
|
sylibr |
⊢ ( ∃ 𝑥 𝑦 = 𝑧 → ( 𝑦 = 𝑧 ∨ ∀ 𝑥 𝑥 = 𝑦 ∨ ∀ 𝑥 𝑥 = 𝑧 ) ) |
| 11 |
|
19.8a |
⊢ ( 𝑦 = 𝑧 → ∃ 𝑥 𝑦 = 𝑧 ) |
| 12 |
|
ax6e |
⊢ ∃ 𝑥 𝑥 = 𝑧 |
| 13 |
|
ax7 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 = 𝑧 → 𝑦 = 𝑧 ) ) |
| 14 |
13
|
com12 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 = 𝑦 → 𝑦 = 𝑧 ) ) |
| 15 |
12 14
|
eximii |
⊢ ∃ 𝑥 ( 𝑥 = 𝑦 → 𝑦 = 𝑧 ) |
| 16 |
15
|
19.35i |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ∃ 𝑥 𝑦 = 𝑧 ) |
| 17 |
|
ax6e |
⊢ ∃ 𝑥 𝑥 = 𝑦 |
| 18 |
17 13
|
eximii |
⊢ ∃ 𝑥 ( 𝑥 = 𝑧 → 𝑦 = 𝑧 ) |
| 19 |
18
|
19.35i |
⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ∃ 𝑥 𝑦 = 𝑧 ) |
| 20 |
11 16 19
|
3jaoi |
⊢ ( ( 𝑦 = 𝑧 ∨ ∀ 𝑥 𝑥 = 𝑦 ∨ ∀ 𝑥 𝑥 = 𝑧 ) → ∃ 𝑥 𝑦 = 𝑧 ) |
| 21 |
10 20
|
impbii |
⊢ ( ∃ 𝑥 𝑦 = 𝑧 ↔ ( 𝑦 = 𝑧 ∨ ∀ 𝑥 𝑥 = 𝑦 ∨ ∀ 𝑥 𝑥 = 𝑧 ) ) |