Metamath Proof Explorer


Theorem wl-exeq

Description: The semantics of E. x y = z . (Contributed by Wolf Lammen, 27-Apr-2018)

Ref Expression
Assertion wl-exeq ( ∃ 𝑥 𝑦 = 𝑧 ↔ ( 𝑦 = 𝑧 ∨ ∀ 𝑥 𝑥 = 𝑦 ∨ ∀ 𝑥 𝑥 = 𝑧 ) )

Proof

Step Hyp Ref Expression
1 nfeqf ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 𝑦 = 𝑧 )
2 1 19.9d ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → ( ∃ 𝑥 𝑦 = 𝑧𝑦 = 𝑧 ) )
3 2 impancom ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ∃ 𝑥 𝑦 = 𝑧 ) → ( ¬ ∀ 𝑥 𝑥 = 𝑧𝑦 = 𝑧 ) )
4 3 orrd ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ∃ 𝑥 𝑦 = 𝑧 ) → ( ∀ 𝑥 𝑥 = 𝑧𝑦 = 𝑧 ) )
5 4 expcom ( ∃ 𝑥 𝑦 = 𝑧 → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑥 𝑥 = 𝑧𝑦 = 𝑧 ) ) )
6 5 orrd ( ∃ 𝑥 𝑦 = 𝑧 → ( ∀ 𝑥 𝑥 = 𝑦 ∨ ( ∀ 𝑥 𝑥 = 𝑧𝑦 = 𝑧 ) ) )
7 3orass ( ( ∀ 𝑥 𝑥 = 𝑦 ∨ ∀ 𝑥 𝑥 = 𝑧𝑦 = 𝑧 ) ↔ ( ∀ 𝑥 𝑥 = 𝑦 ∨ ( ∀ 𝑥 𝑥 = 𝑧𝑦 = 𝑧 ) ) )
8 6 7 sylibr ( ∃ 𝑥 𝑦 = 𝑧 → ( ∀ 𝑥 𝑥 = 𝑦 ∨ ∀ 𝑥 𝑥 = 𝑧𝑦 = 𝑧 ) )
9 3orrot ( ( 𝑦 = 𝑧 ∨ ∀ 𝑥 𝑥 = 𝑦 ∨ ∀ 𝑥 𝑥 = 𝑧 ) ↔ ( ∀ 𝑥 𝑥 = 𝑦 ∨ ∀ 𝑥 𝑥 = 𝑧𝑦 = 𝑧 ) )
10 8 9 sylibr ( ∃ 𝑥 𝑦 = 𝑧 → ( 𝑦 = 𝑧 ∨ ∀ 𝑥 𝑥 = 𝑦 ∨ ∀ 𝑥 𝑥 = 𝑧 ) )
11 19.8a ( 𝑦 = 𝑧 → ∃ 𝑥 𝑦 = 𝑧 )
12 ax6e 𝑥 𝑥 = 𝑧
13 ax7 ( 𝑥 = 𝑦 → ( 𝑥 = 𝑧𝑦 = 𝑧 ) )
14 13 com12 ( 𝑥 = 𝑧 → ( 𝑥 = 𝑦𝑦 = 𝑧 ) )
15 12 14 eximii 𝑥 ( 𝑥 = 𝑦𝑦 = 𝑧 )
16 15 19.35i ( ∀ 𝑥 𝑥 = 𝑦 → ∃ 𝑥 𝑦 = 𝑧 )
17 ax6e 𝑥 𝑥 = 𝑦
18 17 13 eximii 𝑥 ( 𝑥 = 𝑧𝑦 = 𝑧 )
19 18 19.35i ( ∀ 𝑥 𝑥 = 𝑧 → ∃ 𝑥 𝑦 = 𝑧 )
20 11 16 19 3jaoi ( ( 𝑦 = 𝑧 ∨ ∀ 𝑥 𝑥 = 𝑦 ∨ ∀ 𝑥 𝑥 = 𝑧 ) → ∃ 𝑥 𝑦 = 𝑧 )
21 10 20 impbii ( ∃ 𝑥 𝑦 = 𝑧 ↔ ( 𝑦 = 𝑧 ∨ ∀ 𝑥 𝑥 = 𝑦 ∨ ∀ 𝑥 𝑥 = 𝑧 ) )