Step |
Hyp |
Ref |
Expression |
1 |
|
nfeqf |
|- ( ( -. A. x x = y /\ -. A. x x = z ) -> F/ x y = z ) |
2 |
1
|
19.9d |
|- ( ( -. A. x x = y /\ -. A. x x = z ) -> ( E. x y = z -> y = z ) ) |
3 |
2
|
impancom |
|- ( ( -. A. x x = y /\ E. x y = z ) -> ( -. A. x x = z -> y = z ) ) |
4 |
3
|
orrd |
|- ( ( -. A. x x = y /\ E. x y = z ) -> ( A. x x = z \/ y = z ) ) |
5 |
4
|
expcom |
|- ( E. x y = z -> ( -. A. x x = y -> ( A. x x = z \/ y = z ) ) ) |
6 |
5
|
orrd |
|- ( E. x y = z -> ( A. x x = y \/ ( A. x x = z \/ y = z ) ) ) |
7 |
|
3orass |
|- ( ( A. x x = y \/ A. x x = z \/ y = z ) <-> ( A. x x = y \/ ( A. x x = z \/ y = z ) ) ) |
8 |
6 7
|
sylibr |
|- ( E. x y = z -> ( A. x x = y \/ A. x x = z \/ y = z ) ) |
9 |
|
3orrot |
|- ( ( y = z \/ A. x x = y \/ A. x x = z ) <-> ( A. x x = y \/ A. x x = z \/ y = z ) ) |
10 |
8 9
|
sylibr |
|- ( E. x y = z -> ( y = z \/ A. x x = y \/ A. x x = z ) ) |
11 |
|
19.8a |
|- ( y = z -> E. x y = z ) |
12 |
|
ax6e |
|- E. x x = z |
13 |
|
ax7 |
|- ( x = y -> ( x = z -> y = z ) ) |
14 |
13
|
com12 |
|- ( x = z -> ( x = y -> y = z ) ) |
15 |
12 14
|
eximii |
|- E. x ( x = y -> y = z ) |
16 |
15
|
19.35i |
|- ( A. x x = y -> E. x y = z ) |
17 |
|
ax6e |
|- E. x x = y |
18 |
17 13
|
eximii |
|- E. x ( x = z -> y = z ) |
19 |
18
|
19.35i |
|- ( A. x x = z -> E. x y = z ) |
20 |
11 16 19
|
3jaoi |
|- ( ( y = z \/ A. x x = y \/ A. x x = z ) -> E. x y = z ) |
21 |
10 20
|
impbii |
|- ( E. x y = z <-> ( y = z \/ A. x x = y \/ A. x x = z ) ) |