Metamath Proof Explorer


Theorem wl-exeq

Description: The semantics of E. x y = z . (Contributed by Wolf Lammen, 27-Apr-2018)

Ref Expression
Assertion wl-exeq xy=zy=zxx=yxx=z

Proof

Step Hyp Ref Expression
1 nfeqf ¬xx=y¬xx=zxy=z
2 1 19.9d ¬xx=y¬xx=zxy=zy=z
3 2 impancom ¬xx=yxy=z¬xx=zy=z
4 3 orrd ¬xx=yxy=zxx=zy=z
5 4 expcom xy=z¬xx=yxx=zy=z
6 5 orrd xy=zxx=yxx=zy=z
7 3orass xx=yxx=zy=zxx=yxx=zy=z
8 6 7 sylibr xy=zxx=yxx=zy=z
9 3orrot y=zxx=yxx=zxx=yxx=zy=z
10 8 9 sylibr xy=zy=zxx=yxx=z
11 19.8a y=zxy=z
12 ax6e xx=z
13 ax7 x=yx=zy=z
14 13 com12 x=zx=yy=z
15 12 14 eximii xx=yy=z
16 15 19.35i xx=yxy=z
17 ax6e xx=y
18 17 13 eximii xx=zy=z
19 18 19.35i xx=zxy=z
20 11 16 19 3jaoi y=zxx=yxx=zxy=z
21 10 20 impbii xy=zy=zxx=yxx=z