Metamath Proof Explorer


Theorem wl-exeq

Description: The semantics of E. x y = z . (Contributed by Wolf Lammen, 27-Apr-2018)

Ref Expression
Assertion wl-exeq x y = z y = z x x = y x x = z

Proof

Step Hyp Ref Expression
1 nfeqf ¬ x x = y ¬ x x = z x y = z
2 1 19.9d ¬ x x = y ¬ x x = z x y = z y = z
3 2 impancom ¬ x x = y x y = z ¬ x x = z y = z
4 3 orrd ¬ x x = y x y = z x x = z y = z
5 4 expcom x y = z ¬ x x = y x x = z y = z
6 5 orrd x y = z x x = y x x = z y = z
7 3orass x x = y x x = z y = z x x = y x x = z y = z
8 6 7 sylibr x y = z x x = y x x = z y = z
9 3orrot y = z x x = y x x = z x x = y x x = z y = z
10 8 9 sylibr x y = z y = z x x = y x x = z
11 19.8a y = z x y = z
12 ax6e x x = z
13 ax7 x = y x = z y = z
14 13 com12 x = z x = y y = z
15 12 14 eximii x x = y y = z
16 15 19.35i x x = y x y = z
17 ax6e x x = y
18 17 13 eximii x x = z y = z
19 18 19.35i x x = z x y = z
20 11 16 19 3jaoi y = z x x = y x x = z x y = z
21 10 20 impbii x y = z y = z x x = y x x = z