Metamath Proof Explorer


Theorem wl-aleq

Description: The semantics of A. x y = z . (Contributed by Wolf Lammen, 27-Apr-2018)

Ref Expression
Assertion wl-aleq x y = z y = z x x = y x x = z

Proof

Step Hyp Ref Expression
1 sp x y = z y = z
2 equequ2 y = z x = y x = z
3 2 alimi x y = z x x = y x = z
4 albi x x = y x = z x x = y x x = z
5 3 4 syl x y = z x x = y x x = z
6 1 5 jca x y = z y = z x x = y x x = z
7 ax7 x = y x = z y = z
8 7 al2imi x x = y x x = z x y = z
9 8 a1dd x x = y x x = z y = z x y = z
10 axc9 ¬ x x = y ¬ x x = z y = z x y = z
11 9 10 bija x x = y x x = z y = z x y = z
12 11 impcom y = z x x = y x x = z x y = z
13 6 12 impbii x y = z y = z x x = y x x = z