Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Wolf Lammen
Other stuff
wl-aleq
Next ⟩
wl-nfeqfb
Metamath Proof Explorer
Ascii
Unicode
Theorem
wl-aleq
Description:
The semantics of
A. x y = z
.
(Contributed by
Wolf Lammen
, 27-Apr-2018)
Ref
Expression
Assertion
wl-aleq
⊢
∀
x
y
=
z
↔
y
=
z
∧
∀
x
x
=
y
↔
∀
x
x
=
z
Proof
Step
Hyp
Ref
Expression
1
sp
⊢
∀
x
y
=
z
→
y
=
z
2
equequ2
⊢
y
=
z
→
x
=
y
↔
x
=
z
3
2
alimi
⊢
∀
x
y
=
z
→
∀
x
x
=
y
↔
x
=
z
4
albi
⊢
∀
x
x
=
y
↔
x
=
z
→
∀
x
x
=
y
↔
∀
x
x
=
z
5
3
4
syl
⊢
∀
x
y
=
z
→
∀
x
x
=
y
↔
∀
x
x
=
z
6
1
5
jca
⊢
∀
x
y
=
z
→
y
=
z
∧
∀
x
x
=
y
↔
∀
x
x
=
z
7
ax7
⊢
x
=
y
→
x
=
z
→
y
=
z
8
7
al2imi
⊢
∀
x
x
=
y
→
∀
x
x
=
z
→
∀
x
y
=
z
9
8
a1dd
⊢
∀
x
x
=
y
→
∀
x
x
=
z
→
y
=
z
→
∀
x
y
=
z
10
axc9
⊢
¬
∀
x
x
=
y
→
¬
∀
x
x
=
z
→
y
=
z
→
∀
x
y
=
z
11
9
10
bija
⊢
∀
x
x
=
y
↔
∀
x
x
=
z
→
y
=
z
→
∀
x
y
=
z
12
11
impcom
⊢
y
=
z
∧
∀
x
x
=
y
↔
∀
x
x
=
z
→
∀
x
y
=
z
13
6
12
impbii
⊢
∀
x
y
=
z
↔
y
=
z
∧
∀
x
x
=
y
↔
∀
x
x
=
z