Metamath Proof Explorer


Theorem wl-nfeqfb

Description: Extend nfeqf to an equivalence. (Contributed by Wolf Lammen, 31-Jul-2019)

Ref Expression
Assertion wl-nfeqfb xy=zxx=yxx=z

Proof

Step Hyp Ref Expression
1 nf5r xy=zy=zxy=z
2 1 imp xy=zy=zxy=z
3 wl-aleq xy=zy=zxx=yxx=z
4 3 simprbi xy=zxx=yxx=z
5 2 4 syl xy=zy=zxx=yxx=z
6 nfnt xy=zx¬y=z
7 6 nf5rd xy=z¬y=zx¬y=z
8 7 imp xy=z¬y=zx¬y=z
9 alnex x¬y=z¬xy=z
10 wl-exeq xy=zy=zxx=yxx=z
11 9 10 xchbinx x¬y=z¬y=zxx=yxx=z
12 3ioran ¬y=zxx=yxx=z¬y=z¬xx=y¬xx=z
13 11 12 sylbb x¬y=z¬y=z¬xx=y¬xx=z
14 3simpc ¬y=z¬xx=y¬xx=z¬xx=y¬xx=z
15 pm5.21 ¬xx=y¬xx=zxx=yxx=z
16 8 13 14 15 4syl xy=z¬y=zxx=yxx=z
17 5 16 pm2.61dan xy=zxx=yxx=z
18 ax7 x=yx=zy=z
19 18 al2imi xx=yxx=zxy=z
20 nftht xy=zxy=z
21 19 20 syl6 xx=yxx=zxy=z
22 nfeqf ¬xx=y¬xx=zxy=z
23 22 ex ¬xx=y¬xx=zxy=z
24 21 23 bija xx=yxx=zxy=z
25 17 24 impbii xy=zxx=yxx=z