Metamath Proof Explorer


Theorem wl-nfeqfb

Description: Extend nfeqf to an equivalence. (Contributed by Wolf Lammen, 31-Jul-2019)

Ref Expression
Assertion wl-nfeqfb ( Ⅎ 𝑥 𝑦 = 𝑧 ↔ ( ∀ 𝑥 𝑥 = 𝑦 ↔ ∀ 𝑥 𝑥 = 𝑧 ) )

Proof

Step Hyp Ref Expression
1 nf5r ( Ⅎ 𝑥 𝑦 = 𝑧 → ( 𝑦 = 𝑧 → ∀ 𝑥 𝑦 = 𝑧 ) )
2 1 imp ( ( Ⅎ 𝑥 𝑦 = 𝑧𝑦 = 𝑧 ) → ∀ 𝑥 𝑦 = 𝑧 )
3 wl-aleq ( ∀ 𝑥 𝑦 = 𝑧 ↔ ( 𝑦 = 𝑧 ∧ ( ∀ 𝑥 𝑥 = 𝑦 ↔ ∀ 𝑥 𝑥 = 𝑧 ) ) )
4 3 simprbi ( ∀ 𝑥 𝑦 = 𝑧 → ( ∀ 𝑥 𝑥 = 𝑦 ↔ ∀ 𝑥 𝑥 = 𝑧 ) )
5 2 4 syl ( ( Ⅎ 𝑥 𝑦 = 𝑧𝑦 = 𝑧 ) → ( ∀ 𝑥 𝑥 = 𝑦 ↔ ∀ 𝑥 𝑥 = 𝑧 ) )
6 nfnt ( Ⅎ 𝑥 𝑦 = 𝑧 → Ⅎ 𝑥 ¬ 𝑦 = 𝑧 )
7 6 nf5rd ( Ⅎ 𝑥 𝑦 = 𝑧 → ( ¬ 𝑦 = 𝑧 → ∀ 𝑥 ¬ 𝑦 = 𝑧 ) )
8 7 imp ( ( Ⅎ 𝑥 𝑦 = 𝑧 ∧ ¬ 𝑦 = 𝑧 ) → ∀ 𝑥 ¬ 𝑦 = 𝑧 )
9 alnex ( ∀ 𝑥 ¬ 𝑦 = 𝑧 ↔ ¬ ∃ 𝑥 𝑦 = 𝑧 )
10 wl-exeq ( ∃ 𝑥 𝑦 = 𝑧 ↔ ( 𝑦 = 𝑧 ∨ ∀ 𝑥 𝑥 = 𝑦 ∨ ∀ 𝑥 𝑥 = 𝑧 ) )
11 9 10 xchbinx ( ∀ 𝑥 ¬ 𝑦 = 𝑧 ↔ ¬ ( 𝑦 = 𝑧 ∨ ∀ 𝑥 𝑥 = 𝑦 ∨ ∀ 𝑥 𝑥 = 𝑧 ) )
12 3ioran ( ¬ ( 𝑦 = 𝑧 ∨ ∀ 𝑥 𝑥 = 𝑦 ∨ ∀ 𝑥 𝑥 = 𝑧 ) ↔ ( ¬ 𝑦 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) )
13 11 12 sylbb ( ∀ 𝑥 ¬ 𝑦 = 𝑧 → ( ¬ 𝑦 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) )
14 3simpc ( ( ¬ 𝑦 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) )
15 pm5.21 ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → ( ∀ 𝑥 𝑥 = 𝑦 ↔ ∀ 𝑥 𝑥 = 𝑧 ) )
16 8 13 14 15 4syl ( ( Ⅎ 𝑥 𝑦 = 𝑧 ∧ ¬ 𝑦 = 𝑧 ) → ( ∀ 𝑥 𝑥 = 𝑦 ↔ ∀ 𝑥 𝑥 = 𝑧 ) )
17 5 16 pm2.61dan ( Ⅎ 𝑥 𝑦 = 𝑧 → ( ∀ 𝑥 𝑥 = 𝑦 ↔ ∀ 𝑥 𝑥 = 𝑧 ) )
18 ax7 ( 𝑥 = 𝑦 → ( 𝑥 = 𝑧𝑦 = 𝑧 ) )
19 18 al2imi ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑥 𝑥 = 𝑧 → ∀ 𝑥 𝑦 = 𝑧 ) )
20 nftht ( ∀ 𝑥 𝑦 = 𝑧 → Ⅎ 𝑥 𝑦 = 𝑧 )
21 19 20 syl6 ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑥 𝑥 = 𝑧 → Ⅎ 𝑥 𝑦 = 𝑧 ) )
22 nfeqf ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 𝑦 = 𝑧 )
23 22 ex ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ¬ ∀ 𝑥 𝑥 = 𝑧 → Ⅎ 𝑥 𝑦 = 𝑧 ) )
24 21 23 bija ( ( ∀ 𝑥 𝑥 = 𝑦 ↔ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 𝑦 = 𝑧 )
25 17 24 impbii ( Ⅎ 𝑥 𝑦 = 𝑧 ↔ ( ∀ 𝑥 𝑥 = 𝑦 ↔ ∀ 𝑥 𝑥 = 𝑧 ) )