Step |
Hyp |
Ref |
Expression |
1 |
|
nf5r |
⊢ ( Ⅎ 𝑥 𝑦 = 𝑧 → ( 𝑦 = 𝑧 → ∀ 𝑥 𝑦 = 𝑧 ) ) |
2 |
1
|
imp |
⊢ ( ( Ⅎ 𝑥 𝑦 = 𝑧 ∧ 𝑦 = 𝑧 ) → ∀ 𝑥 𝑦 = 𝑧 ) |
3 |
|
wl-aleq |
⊢ ( ∀ 𝑥 𝑦 = 𝑧 ↔ ( 𝑦 = 𝑧 ∧ ( ∀ 𝑥 𝑥 = 𝑦 ↔ ∀ 𝑥 𝑥 = 𝑧 ) ) ) |
4 |
3
|
simprbi |
⊢ ( ∀ 𝑥 𝑦 = 𝑧 → ( ∀ 𝑥 𝑥 = 𝑦 ↔ ∀ 𝑥 𝑥 = 𝑧 ) ) |
5 |
2 4
|
syl |
⊢ ( ( Ⅎ 𝑥 𝑦 = 𝑧 ∧ 𝑦 = 𝑧 ) → ( ∀ 𝑥 𝑥 = 𝑦 ↔ ∀ 𝑥 𝑥 = 𝑧 ) ) |
6 |
|
nfnt |
⊢ ( Ⅎ 𝑥 𝑦 = 𝑧 → Ⅎ 𝑥 ¬ 𝑦 = 𝑧 ) |
7 |
6
|
nf5rd |
⊢ ( Ⅎ 𝑥 𝑦 = 𝑧 → ( ¬ 𝑦 = 𝑧 → ∀ 𝑥 ¬ 𝑦 = 𝑧 ) ) |
8 |
7
|
imp |
⊢ ( ( Ⅎ 𝑥 𝑦 = 𝑧 ∧ ¬ 𝑦 = 𝑧 ) → ∀ 𝑥 ¬ 𝑦 = 𝑧 ) |
9 |
|
alnex |
⊢ ( ∀ 𝑥 ¬ 𝑦 = 𝑧 ↔ ¬ ∃ 𝑥 𝑦 = 𝑧 ) |
10 |
|
wl-exeq |
⊢ ( ∃ 𝑥 𝑦 = 𝑧 ↔ ( 𝑦 = 𝑧 ∨ ∀ 𝑥 𝑥 = 𝑦 ∨ ∀ 𝑥 𝑥 = 𝑧 ) ) |
11 |
9 10
|
xchbinx |
⊢ ( ∀ 𝑥 ¬ 𝑦 = 𝑧 ↔ ¬ ( 𝑦 = 𝑧 ∨ ∀ 𝑥 𝑥 = 𝑦 ∨ ∀ 𝑥 𝑥 = 𝑧 ) ) |
12 |
|
3ioran |
⊢ ( ¬ ( 𝑦 = 𝑧 ∨ ∀ 𝑥 𝑥 = 𝑦 ∨ ∀ 𝑥 𝑥 = 𝑧 ) ↔ ( ¬ 𝑦 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ) |
13 |
11 12
|
sylbb |
⊢ ( ∀ 𝑥 ¬ 𝑦 = 𝑧 → ( ¬ 𝑦 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ) |
14 |
|
3simpc |
⊢ ( ( ¬ 𝑦 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ) |
15 |
|
pm5.21 |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → ( ∀ 𝑥 𝑥 = 𝑦 ↔ ∀ 𝑥 𝑥 = 𝑧 ) ) |
16 |
8 13 14 15
|
4syl |
⊢ ( ( Ⅎ 𝑥 𝑦 = 𝑧 ∧ ¬ 𝑦 = 𝑧 ) → ( ∀ 𝑥 𝑥 = 𝑦 ↔ ∀ 𝑥 𝑥 = 𝑧 ) ) |
17 |
5 16
|
pm2.61dan |
⊢ ( Ⅎ 𝑥 𝑦 = 𝑧 → ( ∀ 𝑥 𝑥 = 𝑦 ↔ ∀ 𝑥 𝑥 = 𝑧 ) ) |
18 |
|
ax7 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 = 𝑧 → 𝑦 = 𝑧 ) ) |
19 |
18
|
al2imi |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑥 𝑥 = 𝑧 → ∀ 𝑥 𝑦 = 𝑧 ) ) |
20 |
|
nftht |
⊢ ( ∀ 𝑥 𝑦 = 𝑧 → Ⅎ 𝑥 𝑦 = 𝑧 ) |
21 |
19 20
|
syl6 |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑥 𝑥 = 𝑧 → Ⅎ 𝑥 𝑦 = 𝑧 ) ) |
22 |
|
nfeqf |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 𝑦 = 𝑧 ) |
23 |
22
|
ex |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ¬ ∀ 𝑥 𝑥 = 𝑧 → Ⅎ 𝑥 𝑦 = 𝑧 ) ) |
24 |
21 23
|
bija |
⊢ ( ( ∀ 𝑥 𝑥 = 𝑦 ↔ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 𝑦 = 𝑧 ) |
25 |
17 24
|
impbii |
⊢ ( Ⅎ 𝑥 𝑦 = 𝑧 ↔ ( ∀ 𝑥 𝑥 = 𝑦 ↔ ∀ 𝑥 𝑥 = 𝑧 ) ) |