Step |
Hyp |
Ref |
Expression |
1 |
|
nfna1 |
⊢ Ⅎ 𝑧 ¬ ∀ 𝑧 𝑧 = 𝑥 |
2 |
|
nfna1 |
⊢ Ⅎ 𝑧 ¬ ∀ 𝑧 𝑧 = 𝑦 |
3 |
1 2
|
nfan |
⊢ Ⅎ 𝑧 ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ) |
4 |
|
equvinva |
⊢ ( 𝑥 = 𝑦 → ∃ 𝑤 ( 𝑥 = 𝑤 ∧ 𝑦 = 𝑤 ) ) |
5 |
|
dveeq1 |
⊢ ( ¬ ∀ 𝑧 𝑧 = 𝑥 → ( 𝑥 = 𝑤 → ∀ 𝑧 𝑥 = 𝑤 ) ) |
6 |
5
|
imp |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ 𝑥 = 𝑤 ) → ∀ 𝑧 𝑥 = 𝑤 ) |
7 |
|
dveeq1 |
⊢ ( ¬ ∀ 𝑧 𝑧 = 𝑦 → ( 𝑦 = 𝑤 → ∀ 𝑧 𝑦 = 𝑤 ) ) |
8 |
7
|
imp |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ 𝑦 = 𝑤 ) → ∀ 𝑧 𝑦 = 𝑤 ) |
9 |
|
equtr2 |
⊢ ( ( 𝑥 = 𝑤 ∧ 𝑦 = 𝑤 ) → 𝑥 = 𝑦 ) |
10 |
9
|
alanimi |
⊢ ( ( ∀ 𝑧 𝑥 = 𝑤 ∧ ∀ 𝑧 𝑦 = 𝑤 ) → ∀ 𝑧 𝑥 = 𝑦 ) |
11 |
6 8 10
|
syl2an |
⊢ ( ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ 𝑥 = 𝑤 ) ∧ ( ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ 𝑦 = 𝑤 ) ) → ∀ 𝑧 𝑥 = 𝑦 ) |
12 |
11
|
an4s |
⊢ ( ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ) ∧ ( 𝑥 = 𝑤 ∧ 𝑦 = 𝑤 ) ) → ∀ 𝑧 𝑥 = 𝑦 ) |
13 |
12
|
ex |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ) → ( ( 𝑥 = 𝑤 ∧ 𝑦 = 𝑤 ) → ∀ 𝑧 𝑥 = 𝑦 ) ) |
14 |
13
|
exlimdv |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ) → ( ∃ 𝑤 ( 𝑥 = 𝑤 ∧ 𝑦 = 𝑤 ) → ∀ 𝑧 𝑥 = 𝑦 ) ) |
15 |
4 14
|
syl5 |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ) → ( 𝑥 = 𝑦 → ∀ 𝑧 𝑥 = 𝑦 ) ) |
16 |
3 15
|
nf5d |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ) → Ⅎ 𝑧 𝑥 = 𝑦 ) |