Metamath Proof Explorer


Theorem nfeqf

Description: A variable is effectively not free in an equality if it is not either of the involved variables. F/ version of ax-c9 . Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by Mario Carneiro, 6-Oct-2016) Remove dependency on ax-11 . (Revised by Wolf Lammen, 6-Sep-2018) (New usage is discouraged.)

Ref Expression
Assertion nfeqf ¬zz=x¬zz=yzx=y

Proof

Step Hyp Ref Expression
1 nfna1 z¬zz=x
2 nfna1 z¬zz=y
3 1 2 nfan z¬zz=x¬zz=y
4 equvinva x=ywx=wy=w
5 dveeq1 ¬zz=xx=wzx=w
6 5 imp ¬zz=xx=wzx=w
7 dveeq1 ¬zz=yy=wzy=w
8 7 imp ¬zz=yy=wzy=w
9 equtr2 x=wy=wx=y
10 9 alanimi zx=wzy=wzx=y
11 6 8 10 syl2an ¬zz=xx=w¬zz=yy=wzx=y
12 11 an4s ¬zz=x¬zz=yx=wy=wzx=y
13 12 ex ¬zz=x¬zz=yx=wy=wzx=y
14 13 exlimdv ¬zz=x¬zz=ywx=wy=wzx=y
15 4 14 syl5 ¬zz=x¬zz=yx=yzx=y
16 3 15 nf5d ¬zz=x¬zz=yzx=y