Metamath Proof Explorer
Table of Contents - 1.5.4. Axiom scheme ax-13 (Quantified Equality)
- ax-13
- ax13v
- ax13lem1
- ax13
- ax13lem2
- nfeqf2
- dveeq2
- nfeqf1
- dveeq1
- nfeqf
- axc9
- ax6e
- ax6
- axc10
- spimt
- spim
- spimed
- spime
- spimv
- spimvALT
- spimev
- spv
- spei
- chvar
- chvarv
- cbv3
- cbval
- cbvex
- cbvalv
- cbvexv
- cbv1
- cbv2
- cbv3h
- cbv1h
- cbv2h
- cbvald
- cbvexd
- cbvaldva
- cbvexdva
- cbval2
- cbvex2
- cbval2vv
- cbvex2vv
- cbvex4v
- equs4
- equsal
- equsex
- equsexALT
- equsalh
- equsexh
- axc15
- ax12
- ax12b
- ax13ALT
- axc11n
- aecom
- aecoms
- naecoms
- axc11
- hbae
- hbnae
- nfae
- nfnae
- hbnaes
- axc16i
- axc16nfALT
- dral2
- dral1
- dral1ALT
- drex1
- drex2
- drnf1
- drnf2
- nfald2
- nfexd2
- exdistrf
- dvelimf
- dvelimdf
- dvelimh
- dvelim
- dvelimv
- dvelimnf
- dveeq2ALT
- equvini
- equvel
- equs5a
- equs5e
- equs45f
- equs5
- dveel1
- dveel2
- axc14
- sb6x
- sbequ5
- sbequ6
- sb5rf
- sb6rf
- ax12vALT
- 2ax6elem
- 2ax6e
- 2sb5rf
- 2sb6rf
- sbel2x
- sb4b
- sb3b
- sb3
- sb1
- sb2
- sb4a
- dfsb1
- hbsb2
- nfsb2
- hbsb2a
- sb4e
- hbsb2e
- hbsb3
- nfs1
- axc16ALT
- axc16gALT
- equsb1
- equsb2
- dfsb2
- dfsb3
- drsb1
- sb2ae
- sb6f
- sb5f
- nfsb4t
- nfsb4
- sbequ8
- sbie
- sbied
- sbiedv
- 2sbiev
- sbcom3
- sbco
- sbid2
- sbid2v
- sbidm
- sbco2
- sbco2d
- sbco3
- sbcom
- sbtrt
- sbtr
- sb8
- sb8e
- sb9
- sb9i
- sbhb
- nfsbd
- nfsb
- hbsb
- sb7f
- sb7h
- sb10f
- sbal1
- sbal2
- 2sb8e