Metamath Proof Explorer


Theorem sbal2

Description: Move quantifier in and out of substitution. (Contributed by NM, 2-Jan-2002) Remove a distinct variable constraint. (Revised by Wolf Lammen, 24-Dec-2022) (Proof shortened by Wolf Lammen, 23-Sep-2023) Usage of this theorem is discouraged because it depends on ax-13 . Use sbal instead. (New usage is discouraged.)

Ref Expression
Assertion sbal2 ¬xx=yzyxφxzyφ

Proof

Step Hyp Ref Expression
1 sbequ12 y=zxφzyxφ
2 1 sps yy=zxφzyxφ
3 sbequ12 y=zφzyφ
4 3 sps yy=zφzyφ
5 4 dral2 yy=zxφxzyφ
6 2 5 bitr3d yy=zzyxφxzyφ
7 6 adantl ¬xx=yyy=zzyxφxzyφ
8 sb4b ¬yy=zzyxφyy=zxφ
9 8 adantl ¬xx=y¬yy=zzyxφyy=zxφ
10 nfnae x¬yy=z
11 sb4b ¬yy=zzyφyy=zφ
12 10 11 albid ¬yy=zxzyφxyy=zφ
13 alcom xyy=zφyxy=zφ
14 12 13 bitrdi ¬yy=zxzyφyxy=zφ
15 nfnae y¬xx=y
16 nfeqf1 ¬xx=yxy=z
17 19.21t xy=zxy=zφy=zxφ
18 16 17 syl ¬xx=yxy=zφy=zxφ
19 15 18 albid ¬xx=yyxy=zφyy=zxφ
20 14 19 sylan9bbr ¬xx=y¬yy=zxzyφyy=zxφ
21 9 20 bitr4d ¬xx=y¬yy=zzyxφxzyφ
22 7 21 pm2.61dan ¬xx=yzyxφxzyφ