Metamath Proof Explorer


Theorem sbal

Description: Move universal quantifier in and out of substitution. (Contributed by NM, 16-May-1993) (Proof shortened by Wolf Lammen, 29-Sep-2018) Reduce dependencies on axioms. (Revised by Steven Nguyen, 13-Aug-2023)

Ref Expression
Assertion sbal zyxφxzyφ

Proof

Step Hyp Ref Expression
1 alcom wxw=zyy=wφxww=zyy=wφ
2 19.21v xy=wφy=wxφ
3 2 albii yxy=wφyy=wxφ
4 alcom yxy=wφxyy=wφ
5 3 4 bitr3i yy=wxφxyy=wφ
6 5 imbi2i w=zyy=wxφw=zxyy=wφ
7 6 albii ww=zyy=wxφww=zxyy=wφ
8 df-sb zyxφww=zyy=wxφ
9 19.21v xw=zyy=wφw=zxyy=wφ
10 9 albii wxw=zyy=wφww=zxyy=wφ
11 7 8 10 3bitr4i zyxφwxw=zyy=wφ
12 df-sb zyφww=zyy=wφ
13 12 albii xzyφxww=zyy=wφ
14 1 11 13 3bitr4i zyxφxzyφ