| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sbequ12 |
⊢ ( 𝑦 = 𝑧 → ( ∀ 𝑥 𝜑 ↔ [ 𝑧 / 𝑦 ] ∀ 𝑥 𝜑 ) ) |
| 2 |
1
|
sps |
⊢ ( ∀ 𝑦 𝑦 = 𝑧 → ( ∀ 𝑥 𝜑 ↔ [ 𝑧 / 𝑦 ] ∀ 𝑥 𝜑 ) ) |
| 3 |
|
sbequ12 |
⊢ ( 𝑦 = 𝑧 → ( 𝜑 ↔ [ 𝑧 / 𝑦 ] 𝜑 ) ) |
| 4 |
3
|
sps |
⊢ ( ∀ 𝑦 𝑦 = 𝑧 → ( 𝜑 ↔ [ 𝑧 / 𝑦 ] 𝜑 ) ) |
| 5 |
4
|
dral2 |
⊢ ( ∀ 𝑦 𝑦 = 𝑧 → ( ∀ 𝑥 𝜑 ↔ ∀ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 ) ) |
| 6 |
2 5
|
bitr3d |
⊢ ( ∀ 𝑦 𝑦 = 𝑧 → ( [ 𝑧 / 𝑦 ] ∀ 𝑥 𝜑 ↔ ∀ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 ) ) |
| 7 |
6
|
adantl |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ∀ 𝑦 𝑦 = 𝑧 ) → ( [ 𝑧 / 𝑦 ] ∀ 𝑥 𝜑 ↔ ∀ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 ) ) |
| 8 |
|
sb4b |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ( [ 𝑧 / 𝑦 ] ∀ 𝑥 𝜑 ↔ ∀ 𝑦 ( 𝑦 = 𝑧 → ∀ 𝑥 𝜑 ) ) ) |
| 9 |
8
|
adantl |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( [ 𝑧 / 𝑦 ] ∀ 𝑥 𝜑 ↔ ∀ 𝑦 ( 𝑦 = 𝑧 → ∀ 𝑥 𝜑 ) ) ) |
| 10 |
|
nfnae |
⊢ Ⅎ 𝑥 ¬ ∀ 𝑦 𝑦 = 𝑧 |
| 11 |
|
sb4b |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ( [ 𝑧 / 𝑦 ] 𝜑 ↔ ∀ 𝑦 ( 𝑦 = 𝑧 → 𝜑 ) ) ) |
| 12 |
10 11
|
albid |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ( ∀ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑦 = 𝑧 → 𝜑 ) ) ) |
| 13 |
|
alcom |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝑦 = 𝑧 → 𝜑 ) ↔ ∀ 𝑦 ∀ 𝑥 ( 𝑦 = 𝑧 → 𝜑 ) ) |
| 14 |
12 13
|
bitrdi |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ( ∀ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 ↔ ∀ 𝑦 ∀ 𝑥 ( 𝑦 = 𝑧 → 𝜑 ) ) ) |
| 15 |
|
nfnae |
⊢ Ⅎ 𝑦 ¬ ∀ 𝑥 𝑥 = 𝑦 |
| 16 |
|
nfeqf1 |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝑦 = 𝑧 ) |
| 17 |
|
19.21t |
⊢ ( Ⅎ 𝑥 𝑦 = 𝑧 → ( ∀ 𝑥 ( 𝑦 = 𝑧 → 𝜑 ) ↔ ( 𝑦 = 𝑧 → ∀ 𝑥 𝜑 ) ) ) |
| 18 |
16 17
|
syl |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑥 ( 𝑦 = 𝑧 → 𝜑 ) ↔ ( 𝑦 = 𝑧 → ∀ 𝑥 𝜑 ) ) ) |
| 19 |
15 18
|
albid |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑦 ∀ 𝑥 ( 𝑦 = 𝑧 → 𝜑 ) ↔ ∀ 𝑦 ( 𝑦 = 𝑧 → ∀ 𝑥 𝜑 ) ) ) |
| 20 |
14 19
|
sylan9bbr |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( ∀ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 ↔ ∀ 𝑦 ( 𝑦 = 𝑧 → ∀ 𝑥 𝜑 ) ) ) |
| 21 |
9 20
|
bitr4d |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( [ 𝑧 / 𝑦 ] ∀ 𝑥 𝜑 ↔ ∀ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 ) ) |
| 22 |
7 21
|
pm2.61dan |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( [ 𝑧 / 𝑦 ] ∀ 𝑥 𝜑 ↔ ∀ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 ) ) |